Concept explainers
Ethyl alcohol (ethanol) can be produced by the fermentation of sugars derived from agricultural products such as sugarcane and com. Some countries without large petroleum and natural gas reserves—such as Brazil—have found it profitable to convert a portion of their agricultural output to ethanol for fuel or for use as a feedstock in the synthesis of other chemicals.
In one such process, a portion of the starch in com is converted to ethanol in two consecutive reactions. In a saccharification reaction, starch decomposes in the presence of certain enzymes (biological catalysts) to form an aqueous mash containing maltose (C12H22O11, a sugar) and several other decomposition products. The mash is cooled and combined with additional water and a yeast culture in a batch fermentation tank (fermentor). In the fermentation reaction (actually a complex series of reactions), the yeast culture grows and in the process converts maltose to ethanol and carbon dioxide:
The fermentor is a 550,000 gallon tank filled to 90% of its capacity with a suspension of mash and yeast in water. The mass of the yeast is negligible compared to the total mass of the tank contents. Thermal energy is released by the exothermic conversion of maltose to ethanol. In an adiabatic operating stage, the temperature of the tank contents increases from an initial value of 85°F to 95°F. and in a second stage the temperature is kept at 95°F by a reactor cooling system. The final reaction mixture contains carbon dioxide dissolved in a slurry containing 7.1 wt% ethanol, 6.9 wt% soluble and suspended solids, and the balance water. The mixture is pumped to a flash evaporator in w hich CO2is vaporized, and the ethanol product is then separated from the remaining mixture components in a series of distillation and stripping operations. Data
• One bushel (56 Ibm) of com yields 25 gallons of mash fed to the fermentor, which in turn yields 2.6 gallons of ethanol. Roughly 101 bushels of com is harvested from an acre of land.
- A batch fermentation cycle (charging the fermentation tank, running the reaction, discharging the tank, and preparing the tank to receive the next load) takes eight hours. The process operates 24 hours per day, 330 days per year.
- The specific gravity of the fermentation reaction mixture is approximately constant at 1.05. The average heat capacity of the mixture is 0.95 Btu/(Ibm·°F). The standard heat of combustion of maltose to form CO 2(g) and
Calculate the standard heat of the maltose conversion reaction,
Learn your wayIncludes step-by-step video
Chapter 9 Solutions
Elementary Principles of Chemical Processes, Binder Ready Version
Additional Engineering Textbook Solutions
Elementary Surveying: An Introduction To Geomatics (15th Edition)
Modern Database Management
Electric Circuits. (11th Edition)
Database Concepts (8th Edition)
Java: An Introduction to Problem Solving and Programming (8th Edition)
Mechanics of Materials (10th Edition)
- Please correct answer and don't use hand ratingarrow_forwardA monochromatic light with a wavelength of 2.5x10-7m strikes a grating containing 10,000 slits/cm. Determine the angular positions of the second-order bright line.arrow_forwardCurved arrows are used to illustrate the flow of electrons. Us the reaction conditions provided and follow the curved arrow to draw the resulting structure(s). Include all lone pairs and charges as appropriate. H :I H 0arrow_forward
- Please correct answer and don't use hand ratingarrow_forwardNonearrow_forwardYou have started a patient on a new drug. Each dose introduces 40 pg/mL of drug after redistribution and prior to elimination. This drug is administered at 24 h intervals and has a half life of 24 h. What will the concentration of drug be after each of the first six doses? Show your work a. What is the concentration after the fourth dose? in pg/mL b. What is the concentration after the fifth dose? in pg/mL c. What is the concentration after the sixth dose? in pg/mLarrow_forward
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningEBK A SMALL SCALE APPROACH TO ORGANIC LChemistryISBN:9781305446021Author:LampmanPublisher:CENGAGE LEARNING - CONSIGNMENT
- World of ChemistryChemistryISBN:9780618562763Author:Steven S. ZumdahlPublisher:Houghton Mifflin College DivIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning