Elementary Principles of Chemical Processes, Binder Ready Version
Elementary Principles of Chemical Processes, Binder Ready Version
4th Edition
ISBN: 9781118431221
Author: Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher: WILEY
bartleby

Concept explainers

Question
Book Icon
Chapter 9, Problem 9.75P
Interpretation Introduction

(a)

Interpretation:

The stream temperature of acetone is to be calculated when the relative saturation of acetone is 12.2%.

Concept introduction:

The stream temperature calculation is based on number of moles of acetone, relative saturation and total pressure at the inlet

Formula for calculation is given as

(RelativeSaturation)C3H6O=(yi×PC3H6OpC3H6O(Tf)) ......... (1)

Here yi is the number of moles of C3H6O, PC3H6O is the total pressure of acetone entered,

pC3H6O(Tf) is the partial pressure for the acetone along with stream temperature

Mole fraction (yi) of any component is given by

yi=nini ......... (2)

Here, ni is the moles of component i and ni is the total moles of all the components present in the mixture.

At (STP) condition volume is considered as 22.4 m3

Interpretation Introduction

(b)

Interpretation:

Composition of product formed before and after combustion and the temperature of exit stream is to be calculated.

Concept introduction:

Mole fraction (yi) of any component is given by

yi=nini ......... (2)

Here, ni is the moles of component i and ni is the total moles of all the components present in the mixture.

Energy balance is used to calculate the temperature of exit stream is defined as the temperature attained by the product at the time of leaving the reactor.

ΔH = nC3H6OΔH^c+outnH^iinnH^i

ΔH is the change in enthalpy at 25C

ΔH^c is the heat of reaction

outnH^i is the heat of formation of product

innH^i is the heat of formation of reactant

outnH^i=nCO2cpCO2ΔT+nH2OcpH2OΔT+nN2cPN2ΔTinnH^i=nCO2cpC3H6OΔT+nO2cpO2ΔT+nN2cPN2ΔT

Enthalpy of reactant and product depends upon the specific heat and the temperature difference.

Interpretation Introduction

(c)

Interpretation:

The rate of heat transfer in kW for the process before and after combustion is to be calculated. The process for switching of reactor is also to be suggested.

Concept introduction:

Amount of heat transferred in watt is calculated as

Q=outnH^iinnH^i

Based on average heat capacity and temperature.

Blurred answer
Students have asked these similar questions
Thermophysical Properties of Petroleum Fractions and Crude Ofls 67 3.4. A gas oil has the following TBP distillation data Volume % TBP (°C) 0 216 10 243 30 268 50 284 70 304 90 318 95 327 100 334 It also has an average boiling point of 280 °C and an average density of 0.850 g/cm³. (a) Split this gas oil fraction into five pseudo-components. Calculate T., Pc and w for each pseudo-component. (b) Calculate T, Pc and w for the whole gas oil fraction. (c) Calculate the enthalpy of this gas oil fraction at 400 °C using the Lee- Kessler correlation with a reference state of ideal gas at 273.15 K.
3.3. Use the following crude assay data with crude API of 36 to estimate cut vol%, critical properties and molecular weight for Light Naphtha (90- 190 °F) and Kerosene (380-520 °F). In addition, calculate the fractions of paraffins, naphthenes and aromatics in the two cuts. ASTM D86 (°F) Volume % Cum vol% SG 86 0.0 0.0 122 0.5 0.5 0.6700 167 1.2 1.7 0.6750 212 1.6 3.3 0.7220 257 2.7 6.0 0.7480 302 3.1 9.1 0.7650 347 3.9 13.0 0.7780 392 4.7 17.7 0.7890 437 5.7 23.4 0.8010 482 8.0 31.4 0.8140 527 10.7 42.1 0.8250 584 5.0 47.1 0.8450 636 10.0 57.1 0.8540 689 7.8 64.9 0.8630 742 7.0 71.9 0.8640 794 6.5 78.4 0.8890 20.8 99.2 0.9310
۱۱۳ ۱۱۱۰ ۱۱۰ A + C Chegg Learn on the go = Chegg © chegg.com/homewo Open in app EN-US QUESTIONS AND PROBLEMS 4.1. With 100,000 BPD of the following crude (API = 36), estimate the products of the atmospheric distillation column. If the atmospheric residue of the crude is taken at 650+ F. It enters in a vacuum distilla- tion tower to give three products: light vacuum gas oil (650-850 °F), heavy vacuum gas oil (850-1050 °F) and vacuum residue (1050+ °F). Calculate the mass flow rate of these products. Then calculate the sulphur content (lb/hr) for each product. ASTM D86 (°F) vol% Cum vol% SG 86 0.0 0.0 122 0.5 0.5 0.6700 167 1.2 1.7 0.6750 212 1.6 3.3 0.7220 257 2.7 6.0 0.7480 3021 3.1 9.1 0.7650 347 3.9 13.0 0.7780 392 4.7 17.7 0.7890 437 5.7 23.4 0.8010 4821 8.0 31.41 0.8140 527 10,7 42.1 0.8250 584 5.0 47.1 0.8450 6361 10,0 57.1 0.8540 689 7,8 64.9 0.8630 7421 7.0 71.9 0.8640 794 6.5 78.4 0.8890 20.8 99.2 0.9310 Show transcribed image text Here's the best way to solve it. This problem…

Chapter 9 Solutions

Elementary Principles of Chemical Processes, Binder Ready Version

Ch. 9 - Prob. 9.11PCh. 9 - Prob. 9.12PCh. 9 - In the production of many microelectronic devices,...Ch. 9 - Prob. 9.14PCh. 9 - Prob. 9.15PCh. 9 - Prob. 9.16PCh. 9 - Prob. 9.17PCh. 9 - Carbon monoxide at 25°C and steam at 150°C are fed...Ch. 9 - Prob. 9.19PCh. 9 - Prob. 9.20PCh. 9 - Ethyl alcohol (ethanol) can be produced by the...Ch. 9 - Prob. 9.22PCh. 9 - Prob. 9.23PCh. 9 - Prob. 9.24PCh. 9 - Formaldehyde is produced commercially by the...Ch. 9 - Prob. 9.26PCh. 9 - Prob. 9.27PCh. 9 - Prob. 9.28PCh. 9 - Prob. 9.29PCh. 9 - A gas mixture containing 85 mole% methane and the...Ch. 9 - Ethylene oxide is produced by the catalytic...Ch. 9 - Cumene (C6H5C3H7) is produced by reacting benzene...Ch. 9 - Ethylbenzene is converted to styrene in the...Ch. 9 - Prob. 9.34PCh. 9 - Prob. 9.35PCh. 9 - Prob. 9.36PCh. 9 - Prob. 9.37PCh. 9 - Coke can be converted into CO—a fuel gas—in the...Ch. 9 - Prob. 9.39PCh. 9 - Prob. 9.40PCh. 9 - Prob. 9.41PCh. 9 - The equilibrium constant for the ethane...Ch. 9 - You are checking the performance of a reactor in...Ch. 9 - Hydrogen is produced in the steam reforming of...Ch. 9 - Prob. 9.45PCh. 9 - Five cubic meters of a 1.00-molar aqueous sulfuric...Ch. 9 - Prob. 9.47PCh. 9 - Prob. 9.48PCh. 9 - Prob. 9.49PCh. 9 - Calcium chloride is a salt used in a number of...Ch. 9 - A dilute aqueous solution of sulfuric acid at 25°C...Ch. 9 - A 2.00 mole% sulfuric acid solution is neutralized...Ch. 9 - A 12.0-molar solution of sodium hydroxide (SG =...Ch. 9 - Citric acid (C6H8O7) is used in the preparation of...Ch. 9 - Ammonia scrubbing is one of many processes for...Ch. 9 - Various uses for nitric acid are given in Problem...Ch. 9 - A natural gas is analyzed and found to consist of...Ch. 9 - Prob. 9.58PCh. 9 - A fuel gas is known to contain methane, ethane,...Ch. 9 - A fuel gas containing 85.0 mole% methane and the...Ch. 9 - A mixture of air and a fine spray of gasoline at...Ch. 9 - The heating value of a fuel oil is to be measured...Ch. 9 - Methanol vapor is burned with excess air in a...Ch. 9 - Methane at 25°C is burned in a boiler furnace with...Ch. 9 - Methane is burned completely with 40% excess air....Ch. 9 - A gaseous fuel containing methane and ethane is...Ch. 9 - A coal contains 73.0 wt% C, 4.7% H (not including...Ch. 9 - A mixture of methane, ethane, and argon at 25°C is...Ch. 9 - Prob. 9.69PCh. 9 - Prob. 9.70PCh. 9 - Prob. 9.71PCh. 9 - A bituminous coal is burned with air in a boiler...Ch. 9 - Prob. 9.73PCh. 9 - A natural gas containing 82.0 mole% CH4and the...Ch. 9 - Prob. 9.75PCh. 9 - Liquid n-pentane at 25°C is burned with 30% excess...Ch. 9 - Methane is burned with 25% excess air in a...Ch. 9 - Methane and 30% excess air are to be fed to a...Ch. 9 - Prob. 9.79PCh. 9 - In Problem 9.79, the synthesis of methanol from...Ch. 9 - Natural gas that contains methane, ethane, and...Ch. 9 - Prob. 9.82PCh. 9 - The wastewater treatment plant at the Ossabaw...
Knowledge Booster
Background pattern image
Chemical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introduction to Chemical Engineering Thermodynami...
Chemical Engineering
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:McGraw-Hill Education
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemical Engineering
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Text book image
Elements of Chemical Reaction Engineering (5th Ed...
Chemical Engineering
ISBN:9780133887518
Author:H. Scott Fogler
Publisher:Prentice Hall
Text book image
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:9781119285915
Author:Seborg
Publisher:WILEY
Text book image
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:9781285061238
Author:Lokensgard, Erik
Publisher:Delmar Cengage Learning
Text book image
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:9780072848236
Author:Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:McGraw-Hill Companies, The