
Pick an isolated system for the following scenarios while including the fewest number of objects as possible. a. A satellite in orbit around the Earth b. An airplane in flight c. A truck driving along the road d. A person jumping
(a)

The isolated system including the fewest number of objects as possible for the scenario of a satellite in orbit around the earth.
Answer to Problem 1PQ
The earth and satellite are an isolated system by assuming gravitational force due to other objects such as sun are negligible and drag force is negligible.
Explanation of Solution
An isolated system consists of two or more objects in which system’s energy is only converted or changed from one form to another. For an isolated system, energy transfer into or out of the system is not possible. An isolated system is not affected by net external forces that change the momentum of the system. The source of external force originates from a source other than two objects of the system.
Consider a satellite in orbit around the earth. The forces acting on satellite and earth are the gravitational force of attraction of the sun, of the moon, and the drag forces in atmosphere. The distance from sun or moon to earth’s atmosphere is very large compared to distance between the satellite and earth and at the top atmosphere drag force is less, so that neglecting these gravitational attractive forces and drag force will not influence momentum of the system. Centripetal force necessary for orbital motion of a satellite is provided only by earth. All these indicate that satellite and earth form an isolated system.
Conclusion:
The earth and satellite is an isolated system by assuming gravitational force due to other objects such as sun are negligible and drag force is negligible.
(b)

The isolated system including the fewest number of objects as possible for the scenario of an airplane in flight.
Answer to Problem 1PQ
The airplane in flight, earth’s atmosphere, and earth form an isolated system.
Explanation of Solution
An isolated system consists of two or more objects so that momentum of the system is not altered by any external forces. An airplane itself cannot be considered as an isolated system since air drag alters its momentum. Gravitational attraction of earth also affects the motion of the airplane.
Thus, the airplane along with the earth and earth’s atmosphere form an isolated system. No other external forces affect the total momentum of the system. Total energy of this system will be always constant.
Conclusion:
Therefore, the airplane in flight, earth’s atmosphere, and earth form an isolated system.
(c)

The isolated system including the fewest number of objects as possible for the scenario of a truck driving along the road.
Answer to Problem 1PQ
The truck, the road, surrounding air, and earth form an isolated system.
Explanation of Solution
A truck itself driving along the road cannot be considered as an isolated system. Motion of the truck is affected by the surrounding air, frictional force, and gravitational attraction. Since truck is affected by external forces, it cannot be an isolated system.
The truck along with the surrounding air, road, and earth form an isolated system. The total energy of this system is not affected by any other external force.
Conclusion:
Therefore, the truck, the road, surrounding air and earth form an isolated system.
(d)

The isolated system including the fewest number of objects as possible for the scenario of a person jumping.
Answer to Problem 1PQ
A jumping person, the floor, and earth form an isolated system.
Explanation of Solution
According to newton’s third law every action is associated with equal and opposite reaction. A person can jump since he is being acted upon by a force equal to the force he exerts on the floor. The person returns to original place by gravitational attraction of earth.
Total energy of the system consisting of person, earth and floor is always constant. No energy is transferred into or out of the system. Thus, the isolated system consists of that person, earth and the floor.
Conclusion:
Therefore, a jumping person, floor, and earth form an isolated system.
Want to see more full solutions like this?
Chapter 9 Solutions
Physics for Scientists and Engineers: Foundations and Connections
- Solve and answer the problem correctly and be sure to check your work. Thank you!!arrow_forwardThe spring in the figure has a spring constant of 1300 N/m. It is compressed 17.0 cm, then launches a 200 g block. The horizontal surface is frictionless, but the block’s coefficient of kinetic friction on the incline is 0.200. What distance d does the block sail through the air?arrow_forwardSolve and answer the problem correctly and be sure to check your work. Thank you!!arrow_forward
- Solve and answer the problem correctly and be sure to check your work. Thank you!!arrow_forwardA 10-m-long glider with a mass of 680 kg (including the passengers) is gliding horizontally through the air at 28 m/s when a 60 kg skydiver drops out by releasing his grip on the glider. What is the glider's speed just after the skydiver lets go?arrow_forwardPROBLEM 2 A cube of mass m is placed in a rotating funnel. (The funnel is rotating around the vertical axis shown in the diagram.) There is no friction between the cube and the funnel but the funnel is rotating at just the right speed needed to keep the cube rotating with the funnel. The cube travels in a circular path of radius r, and the angle between the vertical and the wall of the funnel is 0. Express your answers to parts (b) and (c) in terms of m, r, g, and/or 0. (a) Sketch a free-body diagram for the cube. Show all the forces acting on it, and show the appropriate coordinate system to use for this problem. (b) What is the normal force acting on the cube? FN=mg58 (c) What is the speed v of the cube? (d) If the speed of the cube is different from what you determined in part (c), a force of friction is necessary to keep the cube from slipping in the funnel. If the funnel is rotating slower than it was above, draw a new free-body diagram for the cube to show which way friction…arrow_forward
- Circular turns of radius r in a race track are often banked at an angle θ to allow the cars to achieve higher speeds around the turns. Assume friction is not present. Write an expression for the tan(θ) of a car going around the banked turn in terms of the car's speed v, the radius of the turn r, and g so that the car will not move up or down the incline of the turn. tan(θ) =arrow_forwardThe character Min Min from Arms was a DLC character added to Super Smash Bros. Min Min’s arms are large springs, with a spring constant of 8.53 ⋅ 10^3 N/m, which she uses to punch and fling away her opponents. Min Min pushes her spring arm against Steve, who is not moving, compressing it 1.20 m as shown in figure A. Steve has a mass of 81.6 kg. Assuming she uses only the spring to launch Steve, how fast is Steve moving when the spring is no longer compressed? As Steve goes flying away he goes over the edge of the level, as shown in figure C. What is the magnitude of Steve’s velocity when he is 2.00 m below where he started?arrow_forwardSlinky dog whose middle section is a giant spring with a spring constant of 10.9 N/m. Woody, who has a mass of 0.412 kg, grabs onto the tail end of Slink and steps off the bed with no initial velocity and reaches the floor right as his velocity hits zero again. How high is the bed? What is Woody’s velocity halfway down? Enter just the magnitude of velocity.arrow_forward
- No chatgpt pls will upvotearrow_forwardA positive charge of 91 is located 5.11 m to the left of a negative charge 92. The charges have different magnitudes. On the line through the charges, the net electric field is zero at a spot 2.90 m to the right of the negative charge. On this line there are also two spots where the potential is zero. (a) How far to the left of the negative charge is one spot? (b) How far to the right of the negative charge is the other?arrow_forwardA charge of -3.99 μC is fixed in place. From a horizontal distance of 0.0423 m, a particle of mass 7.31 x 103 kg and charge -9.76 µC is fired with an initial speed of 84.1 m/s directly toward the fixed charge. How far does the particle travel before its speed is zero?arrow_forward
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning





