Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN: 9781133939146
Author: Katz, Debora M.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 9, Problem 6PQ
(a)
To determine
Find the magnitude of the force applied by the dock workers.
(b)
To determine
What will happen to the motion of crate if workers applied a force greater than
(c)
To determine
What will happen to the motion of crate if workers applied a force smaller than
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A sledge loaded with bricks has a total mass of 18.0 kg and is pulled at a constant speed by a rope inclined
at 20.0° above the horizontal. The sledge moves a distance of 20.0 m on a horizontal surface. The
coefficient of kinetic friction between the sledge and the surface is µ
0.500.
%3D
a. What is the tension of the rope?
b. How much work is done by the rope on the sledge?
C. What is the mechanical energy lost due to friction?
Josh pushes a 48.0-kg shopping cart with a force of 85.0 N in a direction 35.0°below the horizontal axis. The shopping cart moves from rest and continue for55.0 m on leveled ground. The friction coefficient of the ground is ?? = 0.11.a. Draw Free-body-diagram of the shopping cart.b. Determine the work done by the normal force from the ground to the cart.c. Determine the work done by the pushing force.d. Determine the work done by the frictional force.e. Determine the final speed of the shopping cart at the end of 55m.
Carlo pushes a 35-kg box on a floor level and displaces it 5 m from its initial position.
a. If the force applied to the box is 500 N, what must be the magnitude and the direction of the frictional force on the surface?
b. How much work is done by Carlo and by the friction on the box?
c. How much work is done on the box by the normal force and by gravity?
d. What is the net work done on the box by all of the forces applied to it?
Chapter 9 Solutions
Physics for Scientists and Engineers: Foundations and Connections
Ch. 9.4 - In the three cases shown in Figure 9.11, a force...Ch. 9.6 - Prob. 9.2CECh. 9.6 - Prob. 9.3CECh. 9.7 - Prob. 9.4CECh. 9.7 - Prob. 9.5CECh. 9.9 - Prob. 9.6CECh. 9 - Pick an isolated system for the following...Ch. 9 - Prob. 2PQCh. 9 - Prob. 3PQCh. 9 - Prob. 4PQ
Ch. 9 - Prob. 5PQCh. 9 - Prob. 6PQCh. 9 - Prob. 7PQCh. 9 - A 537-kg trailer is hitched to a truck. Find the...Ch. 9 - Prob. 9PQCh. 9 - A helicopter rescues a trapped person of mass m =...Ch. 9 - Prob. 11PQCh. 9 - An object is subject to a force F=(512i134j) N...Ch. 9 - Prob. 13PQCh. 9 - Prob. 14PQCh. 9 - Prob. 15PQCh. 9 - Prob. 16PQCh. 9 - Prob. 17PQCh. 9 - Prob. 18PQCh. 9 - Prob. 19PQCh. 9 - Prob. 20PQCh. 9 - Prob. 21PQCh. 9 - Prob. 22PQCh. 9 - A constant force of magnitude 4.75 N is exerted on...Ch. 9 - In three cases, a force acts on a particle, and...Ch. 9 - An object of mass m = 5.8 kg moves under the...Ch. 9 - A nonconstant force is exerted on a particle as it...Ch. 9 - Prob. 27PQCh. 9 - Prob. 28PQCh. 9 - Prob. 29PQCh. 9 - A particle moves in the xy plane (Fig. P9.30) from...Ch. 9 - A small object is attached to two springs of the...Ch. 9 - Prob. 32PQCh. 9 - Prob. 33PQCh. 9 - Prob. 34PQCh. 9 - Prob. 35PQCh. 9 - Prob. 36PQCh. 9 - Prob. 37PQCh. 9 - Prob. 38PQCh. 9 - A shopper weighs 3.00 kg of apples on a...Ch. 9 - Prob. 40PQCh. 9 - Prob. 41PQCh. 9 - Prob. 42PQCh. 9 - Prob. 43PQCh. 9 - Prob. 44PQCh. 9 - Prob. 45PQCh. 9 - Prob. 46PQCh. 9 - Prob. 47PQCh. 9 - Prob. 48PQCh. 9 - Prob. 49PQCh. 9 - A small 0.65-kg box is launched from rest by a...Ch. 9 - A small 0.65-kg box is launched from rest by a...Ch. 9 - A horizontal spring with force constant k = 625...Ch. 9 - A box of mass m = 2.00 kg is dropped from rest...Ch. 9 - Prob. 54PQCh. 9 - Return to Example 9.9 and use the result to find...Ch. 9 - Prob. 56PQCh. 9 - Crall and Whipple design a loop-the-loop track for...Ch. 9 - Prob. 58PQCh. 9 - Calculate the force required to pull a stuffed toy...Ch. 9 - Prob. 60PQCh. 9 - Prob. 61PQCh. 9 - Prob. 62PQCh. 9 - An elevator motor moves a car with six people...Ch. 9 - Prob. 64PQCh. 9 - Figure P9.65A shows a crate attached to a rope...Ch. 9 - Prob. 66PQCh. 9 - Prob. 67PQCh. 9 - Prob. 68PQCh. 9 - Prob. 69PQCh. 9 - Prob. 70PQCh. 9 - Prob. 71PQCh. 9 - Estimate the power required for a boxer to jump...Ch. 9 - Prob. 73PQCh. 9 - Prob. 74PQCh. 9 - Prob. 75PQCh. 9 - Prob. 76PQCh. 9 - Prob. 77PQCh. 9 - Prob. 78PQCh. 9 - Prob. 79PQCh. 9 - A block of mass m = 0.250 kg is pressed against a...Ch. 9 - On a movie set, an alien spacecraft is to be...Ch. 9 - Prob. 82PQCh. 9 - A spring-loaded toy gun is aimed vertically and...Ch. 9 - Prob. 84PQCh. 9 - The motion of a box of mass m = 2.00 kg along the...Ch. 9 - Prob. 86PQCh. 9 - Prob. 87PQCh. 9 - Prob. 88PQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A puck of mass 0.170 kg slides across ice in the positive x-direction with a kinetic friction coefficient between the ice and puck of 0.150. If the puck is moving at an initial speed of 12.0 m/s, (a) what is the force of kinetic friction? (b) What is the acceleration of the puck? (c) How long does it take for the puck to come to rest? (d) What distance does the puck travel during that time? (e) What total work does friction do on the puck? (f) What average power does friction generate in the puck during that time? (g) What instantaneous power does friction generate in the puck when the velocity is 6.00 m/s? (See Sections 2.5, 4.6, 5.1, and 5.6.)arrow_forward(a) A child slides down a water slide at an amusement park from an initial height h. The slide can be considered frictionless because of the water flowing down it. Can the equation for conservation of mechanical energy be used on the child? (b) Is the mass of the child a factor in determining his speed at the bottom of the slide? (c) The child drops straight down rather than following the curved ramp of the slide. In which case will he be traveling faster at ground level? (d) If friction is present, how would the conservation-of-energy equation be modified? (e) Find the maximum speed of the child when the slide is frictionless if the initial height of the slide is 12.0 m.arrow_forwardEstimate the kinetic energy of the following: a. An ant walking across the kitchen floor b. A baseball thrown by a professional pitcher c. A car on the highway d. A large truck on the highwayarrow_forward
- Estimate the power required for a boxer to jump rope.arrow_forward(a) How much gravitational potential energy (relative to the ground on which it is built) is stored in the Great Pyramid of Cheops, given that its mass is about 7109 kg and its center of mass is 36.5 m above the surrounding ground? (b) How does this energy compare with the daily food intake of a person?arrow_forward(a) Calculate the force needed to bring a 950-kg car to rest from a speed of 90.0 km/h in a distance of 120 m (a fairly typical distance for a non-panic stop). (b) Suppose instead the car hits a concrete abutment at full speed and is brought to a stop in 2.00 m. Calculate the force exerted on the car and compare it with the force found in part (a).arrow_forward
- The motion of a box of mass m = 2.00 kg along the x axis can be described by the function x = 4.00 + 3.00t2+ 2.00t3, where x is in meters and t is in seconds. a. What is the kinetic energy of the box as a function of time? b. What are the acceleration of the box and the force acting on the box as a function of time? c. What is the power delivered to the box as a function of time? d. What is the work performed on the particle during the time interval t = 1.00 s to t = 3.00 s?arrow_forward. In the annual Empire State Building race, contestants run up 1,575 steps to a height of 1,050 ft. In 2003, Australian Paul Crake completed the race in a record time of 9 min and 33 S, Mr., Crake weighed 143 lb (65 kg) , (a) How much work did Mr., Crake do in reaching the top of the building? (b) What was his average power output (in ft-lb/s and in hp)?arrow_forwardThe chin-up is one exercise that can be used to strengthen the biceps muscle. This muscle can exert a force of approximately 8.00 102 N as it contracts a distance of 7.5 cm in a 75-kg male.3 (a) How much work can the biceps muscles (one in each arm) perform in a single contraction? (b) Compare this amount of work with the energy required to lift a 75-kg person 40. cm in performing a chin-up. (c) Do you think the biceps muscle is the only muscle involved in performing a chin-up?arrow_forward
- (a) A block with a mass m is pulled along a horizontal surface for a distance x by a constant force F at an angle with respect to the horizontal. The coefficient of kinetic friction between block and table is k the force exerted by friction equal to kmg? If not, what is the force exerted by friction? (b) How much work is done by the friction force and by F? (Dont forget the signs.) (c) Identify all the forces that do no work on the block, (d) Let m = 2.00 kg, x = 4.00 m, = 37.0, F= 15.0 N, and k = 0.400, and find I the answers to parts (a) and (b). Figure P5.39arrow_forwardSuppose a horizontal force of 20 N is required to maintain a speed of 8 m/s of a 50 kg crate. (a) What is the power of this force? (b) Note that the acceleration of the crate is zero despite the fact that 20 N force acts on the crate horizontally. What happens to the energy given to the crate as a result of the work done by this 20 N force?arrow_forwardA force F(x)=(3.0/x)N acts on a particle as it moves along the positive x-axis. (a) How much work does the force do on the particle as it moves from x=2.0 m to x=5.0 m? (b) Picking a convenient reference point of the potential energy to be zero at x=, find the potential energy for this force.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning