Concept explainers
(a)
The speed of the car when it reaches the bottom of the hill.
(a)
Answer to Problem 47PQ
The speed of the car when it reaches the bottom of the hill is
Explanation of Solution
It is given that the rolling friction is negligible. This implies the principle of conservation of energy can be applied on the system. The gravitational potential energy of the car is converted to its kinetic energy as it falls to the bottom of the hill.
Write the expression for the conservation of energy.
Here,
The initial kinetic energy of the car is zero.
Write the equation for
Assume that initially the car is at a height
Write the expression for
Here,
Assume the height of the car at the bottom of the hill is zero.
Write the expression for
Write the expression for
Here,
Put equations (II) to (V) in equation (I) and rewrite the equation for
Conclusion:
Given that the initial height of the car is
Substitute
Therefore, the speed of the car when it reaches the bottom of the hill is
(b)
The amount of thermal energy of the system that changes during the stopping motion of the car.
(b)
Answer to Problem 47PQ
The amount of thermal energy of the system that changes during the stopping motion of the car is
Explanation of Solution
Write the expression for the work-energy theorem.
Here,
Define the system as the plastic track and the roller coaster’s wheels. During the last stretch on the track, the coaster will be at the same height as that of its initial height. This implies there is no change in potential energy of the system.
There are no external forces doing work on the system.
Write the expression for
The roller coaster is stopped at the final configuration so that its final kinetic energy will be zero.
Write the expression for
Put the above three equations in equation (VII) .
Write the expression for
Here,
Conclusion:
In part (a), it is found that the value of
Substitute
Substitute
Therefore, the amount of thermal energy of the system that changes during the stopping motion of the car is
(c)
The coefficient of kinetic friction between the wheels and the plastic stopping track.
(c)
Answer to Problem 47PQ
The coefficient of kinetic friction between the wheels and the plastic stopping track is
Explanation of Solution
The change in thermal energy of the system occurs due to the work done by the
Write the expression for
Here,
Write the expression for
Here,
Write the expression for
Here,
Write the expression for
Put the above equation in equation (XII).
Put the above equation in equation (XI).
Put the above equation in equation (X) and rewrite it for
Conclusion:
It is given that the car stops at
Substitute
Therefore, the coefficient of kinetic friction between the wheels and the plastic stopping track is
Want to see more full solutions like this?
Chapter 9 Solutions
Physics for Scientists and Engineers: Foundations and Connections
- A puck of mass 0.170 kg slides across ice in the positive x-direction with a kinetic friction coefficient between the ice and puck of 0.150. If the puck is moving at an initial speed of 12.0 m/s, (a) what is the force of kinetic friction? (b) What is the acceleration of the puck? (c) How long does it take for the puck to come to rest? (d) What distance does the puck travel during that time? (e) What total work does friction do on the puck? (f) What average power does friction generate in the puck during that time? (g) What instantaneous power does friction generate in the puck when the velocity is 6.00 m/s? (See Sections 2.5, 4.6, 5.1, and 5.6.)arrow_forwardA suspicious physics student watches a stunt performed at an ice show. In the stunt, a performer shoots an arrow into a bale of hay (Fig. P11.24). Another performer rides on the bale of hay like a cowboy. After the arrow enters the bale, the balearrow system slides roughly 5 m along the ice. Estimate the initial speed of the arrow. Is there a trick to this stunt? FIGURE P11.24arrow_forwardEstimate the kinetic energy of the following: a. An ant walking across the kitchen floor b. A baseball thrown by a professional pitcher c. A car on the highway d. A large truck on the highwayarrow_forward
- (a) What will be the kinetic energy of the asteroid in the previous problem just before it hits Earth? (b) Compare this energy to the output of the largest fission bomb, 2100 TJ. What impact would this have on Earth?arrow_forwardA child of mass m starts from rest and slides without friction from a height h along a slide next to a pool (Fig. P7.27). She is launched from a height h/5 into the air over the pool. We wish to find the maximum height she reaches above the water in her projectile motion. (a) Is the childEarth system isolated or nonisolated? Why? (b) Is there a nonconservative force acting within the system? (c) Define the configuration of the system when the child is at the water level as having zero gravitational potential energy. Express the total energy of the system when the child is at the top of the waterslide. (d) Express the total energy of the system when the child is at the launching point. (e) Express the total energy of the system when the child is at the highest point in her projectile motion. (f) From parts (c) and (d), determine her initial speed vi at the launch point in terms of g and h. (g) From parts (d), (e), and (f), determine her maximum airborne height ymax in terms of h and the launch angle . (h) Would your answers be the same if the waterslide were not frictionless? Explain. Figure P7.27arrow_forwardA In a classic laboratory experiment, a cart of mass m1 on a horizontal air track is attached via a string over an ideal pulley to a hanging cylinder of mass m2. The system is released from rest, and the motion is measured. Find the speed of the cart after the cylinder has descended a distance H.arrow_forward
- A Suppose a planet with mass m is orbiting star with mass M and the mean distance between the planet and the star is a. Using Newtons law of universal gravity, derive an algebraic expression for the speed of the planet when it is at the mean distance from the star.arrow_forward(a) Calculate the force needed to bring a 950-kg car to rest from a speed of 90.0 km/h in a distance of 120 m (a fairly typical distance for a non-panic stop). (b) Suppose instead the car hits a concrete abutment at full speed and is brought to a stop in 2.00 m. Calculate the force exerted on the car and compare it with the force found in part (a).arrow_forwardTo give a pet hamster exercise, some people put the hamster in a ventilated ball andallow it roam around the house(Fig. P13.66). When a hamsteris in such a ball, it can cross atypical room in a few minutes.Estimate the total kinetic energyin the ball-hamster system. FIGURE P13.66 Problems 66 and 67arrow_forward
- A train moves along the tracks at a constant speed u. A woman on the train throws a ball of mass m straight ahead with a speed υ with respect to herself. (a) What is the kinetic energy gain of the ball as measured by a person on the train? (b) by a person standing by the railroad track? (c) How much work is done by the woman throwing he ball and (d) by the train?arrow_forward(a) What is the change in energy of a 1000-kg payload taken from rest at the surface of Earth and placed at rest on the surface of the Moon? (b) What would be the answer if the payload were taken from the Moon’s surface to Earth? Is this a reasonable calculation of the energy needed to move a payload back and forth?arrow_forwardEstimate the power required for a boxer to jump rope.arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University