Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN: 9781133939146
Author: Katz, Debora M.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 9, Problem 58PQ
To determine
Whether the pendulum will swing back to the
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A cart of mass 0.72 kg is attached to one end of of a spring and placed on a low-friction track, inclined at an angle of 56.0 degrees with respect to the horizontal. The cart is found to be in equilibrium when the spring is stretched to a total length of 44.8 cm. Given that the rest length for the spring is 12.8 cm, what is the spring constant for the spring?
A pendulum consists of a 2.0 m long steel wire supporting a lentil of mass 20 kg. If the pendulum is released from a position where it makes an angle of 60 with the vertical, find the difference in length of the wire when the bob is in the initial position and when it passes through its lowest position.
A spring lies on a horizontal table, and the left end of the spring is attached to a wall. The
other end is connected to a box. The box is pulled to the right, stretching the spring. Static
friction exists between the box and the table, so when the spring is stretched only by a small
amount and the box is released, the box does not move. The mass of the box is 0.75 kg, and the
spring has a spring constant of 77 N/m. The coefficient of static friction between the box and
the table on which it rests is us = 0.59. How far can the spring be stretched from its unstrained
position without the box moving when it is released?
Chapter 9 Solutions
Physics for Scientists and Engineers: Foundations and Connections
Ch. 9.4 - In the three cases shown in Figure 9.11, a force...Ch. 9.6 - Prob. 9.2CECh. 9.6 - Prob. 9.3CECh. 9.7 - Prob. 9.4CECh. 9.7 - Prob. 9.5CECh. 9.9 - Prob. 9.6CECh. 9 - Pick an isolated system for the following...Ch. 9 - Prob. 2PQCh. 9 - Prob. 3PQCh. 9 - Prob. 4PQ
Ch. 9 - Prob. 5PQCh. 9 - Prob. 6PQCh. 9 - Prob. 7PQCh. 9 - A 537-kg trailer is hitched to a truck. Find the...Ch. 9 - Prob. 9PQCh. 9 - A helicopter rescues a trapped person of mass m =...Ch. 9 - Prob. 11PQCh. 9 - An object is subject to a force F=(512i134j) N...Ch. 9 - Prob. 13PQCh. 9 - Prob. 14PQCh. 9 - Prob. 15PQCh. 9 - Prob. 16PQCh. 9 - Prob. 17PQCh. 9 - Prob. 18PQCh. 9 - Prob. 19PQCh. 9 - Prob. 20PQCh. 9 - Prob. 21PQCh. 9 - Prob. 22PQCh. 9 - A constant force of magnitude 4.75 N is exerted on...Ch. 9 - In three cases, a force acts on a particle, and...Ch. 9 - An object of mass m = 5.8 kg moves under the...Ch. 9 - A nonconstant force is exerted on a particle as it...Ch. 9 - Prob. 27PQCh. 9 - Prob. 28PQCh. 9 - Prob. 29PQCh. 9 - A particle moves in the xy plane (Fig. P9.30) from...Ch. 9 - A small object is attached to two springs of the...Ch. 9 - Prob. 32PQCh. 9 - Prob. 33PQCh. 9 - Prob. 34PQCh. 9 - Prob. 35PQCh. 9 - Prob. 36PQCh. 9 - Prob. 37PQCh. 9 - Prob. 38PQCh. 9 - A shopper weighs 3.00 kg of apples on a...Ch. 9 - Prob. 40PQCh. 9 - Prob. 41PQCh. 9 - Prob. 42PQCh. 9 - Prob. 43PQCh. 9 - Prob. 44PQCh. 9 - Prob. 45PQCh. 9 - Prob. 46PQCh. 9 - Prob. 47PQCh. 9 - Prob. 48PQCh. 9 - Prob. 49PQCh. 9 - A small 0.65-kg box is launched from rest by a...Ch. 9 - A small 0.65-kg box is launched from rest by a...Ch. 9 - A horizontal spring with force constant k = 625...Ch. 9 - A box of mass m = 2.00 kg is dropped from rest...Ch. 9 - Prob. 54PQCh. 9 - Return to Example 9.9 and use the result to find...Ch. 9 - Prob. 56PQCh. 9 - Crall and Whipple design a loop-the-loop track for...Ch. 9 - Prob. 58PQCh. 9 - Calculate the force required to pull a stuffed toy...Ch. 9 - Prob. 60PQCh. 9 - Prob. 61PQCh. 9 - Prob. 62PQCh. 9 - An elevator motor moves a car with six people...Ch. 9 - Prob. 64PQCh. 9 - Figure P9.65A shows a crate attached to a rope...Ch. 9 - Prob. 66PQCh. 9 - Prob. 67PQCh. 9 - Prob. 68PQCh. 9 - Prob. 69PQCh. 9 - Prob. 70PQCh. 9 - Prob. 71PQCh. 9 - Estimate the power required for a boxer to jump...Ch. 9 - Prob. 73PQCh. 9 - Prob. 74PQCh. 9 - Prob. 75PQCh. 9 - Prob. 76PQCh. 9 - Prob. 77PQCh. 9 - Prob. 78PQCh. 9 - Prob. 79PQCh. 9 - A block of mass m = 0.250 kg is pressed against a...Ch. 9 - On a movie set, an alien spacecraft is to be...Ch. 9 - Prob. 82PQCh. 9 - A spring-loaded toy gun is aimed vertically and...Ch. 9 - Prob. 84PQCh. 9 - The motion of a box of mass m = 2.00 kg along the...Ch. 9 - Prob. 86PQCh. 9 - Prob. 87PQCh. 9 - Prob. 88PQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A vibration sensor, used in testing a washing machine, consists of a cube of aluminum 1.50 cm on edge mounted on one end of a strip of spring steel (like a hacksaw blade) that lies in a vertical plane. The strips mass is small compared with that of the cube, but the strips length is large compared with the size of the cube. The other end of the strip is clamped to the frame of the washing machine that is not operating. A horizontal force of 1.43 N applied to the cube is required to hold it 2.75 cm away from its equilibrium position. If it is released, what is its frequency of vibration?arrow_forwardA grandfather clock has a pendulum length of 0.7 m and mass bob of 0.4 kg. A mass of 2 kg falls 0.8 m in seven days to keep the amplitude (from equilibrium) of the pendulum oscillation steady at 0.03 rad. What is the Q of the system?arrow_forwardA lightweight spring with spring constant k = 225 N/m is attached to a block of mass m1 = 4.50 kg on a frictionless, horizontal table. The blockspring system is initially in the equilibrium configuration. A second block of mass m2 = 3.00 kg is then pushed against the first block, compressing the spring by x = 15.0 cm as in Figure P16.77A. When the force on the second block is removed, the spring pushes both blocks to the right. The block m2 loses contact with the springblock 1 system when the blocks reach the equilibrium configuration of the spring (Fig. P16.77B). a. What is the subsequent speed of block 2? b. Compare the speed of block 1 when it again passes through the equilibrium position with the speed of block 2 found in part (a). 77. (a) The energy of the system initially is entirely potential energy. E0=U0=12kymax2=12(225N/m)(0.150m)2=2.53J At the equilibrium position, the total energy is the total kinetic energy of both blocks: 12(m1+m2)v2=12(4.50kg+3.00kg)v2=(3.75kg)v2=2.53J Therefore, the speed of each block is v=2.53J3.75kg=0.822m/s (b) Once the second block loses contact, the first block is moving at the speed found in part (a) at the equilibrium position. The energy 01 this spring-block 1 system is conserved, so when it returns to the equilibrium position, it will be traveling at the same speed in the opposite direction, or v=0.822m/s. FIGURE P16.77arrow_forward
- A block of mass m = 2.00 kg is attached to a spring of force constant k = 500 N/m as shown in Figure P7.15. The block is pulled to a position xi = 5.00 cm to the right of equilibrium and released from rest. Find the speed the block has as it passes through equilibrium if (a) the horizontal surface is frictionless and (b) the coefficient of friction between block and surface is k = 0.350. Figure P7.15arrow_forwardA particle of mass m moving in one dimension has potential energy U(x) = U0[2(x/a)2 (x/a)4], where U0 and a are positive constants. (a) Find the force F(x), which acts on the particle. (b) Sketch U(x). Find the positions of stable and unstable equilibrium. (c) What is the angular frequency of oscillations about the point of stable equilibrium? (d) What is the minimum speed the particle must have at the origin to escape to infinity? (e) At t = 0 the particle is at the origin and its velocity is positive and equal in magnitude to the escape speed of part (d). Find x(t) and sketch the result.arrow_forwardA 50.0-g object connected to a spring with a force constant of 35.0 N/m oscillates with an amplitude of 4.00 cm on a frictionless, horizontal surface. Find (a) the total energy of the system and (b) the speed of the object when its position is 1.00 cm. Find (c) the kinetic energy and (d) the potential energy when its position is 3.00 cm.arrow_forward
- An object of mass m1 = 9.00 kg is in equilibrium when connected to a light spring of constant k = 100 N/m that is fastened to a wall as shown in Figure P12.67a. A second object, m2 = 7.00 kg, is slowly pushed up against m1, compressing the spring by the amount A = 0.200 m (see Fig. P12.67b). The system is then released, and both objects start moving to the right on the frictionless surface. (a) When m1 reaches the equilibrium point, m2 loses contact with m1 (see Fig. P12.67c) and moves to the right with speed v. Determine the value of v. (b) How far apart are the objects when the spring is fully stretched for the first time (the distance D in Fig. P12.67d)? Figure P12.67arrow_forwardThe amplitude of a lightly damped oscillator decreases by 3.0% during each cycle. What percentage of the mechanical energy of the oscillator is lost in each cycle?arrow_forwardWe do not need the analogy in Equation 16.30 to write expressions for the translational displacement of a pendulum bob along the circular arc s(t), translational speed v(t), and translational acceleration a(t). Show that they are given by s(t) = smax cos (smpt + ) v(t) = vmax sin (smpt + ) a(t) = amax cos(smpt + ) respectively, where smax = max with being the length of the pendulum, vmax = smax smp, and amax = smax smp2.arrow_forward
- A spring 1.50 m long with force constant 475 N/m is hung from the ceiling of an elevator, and a block of mass 10.0 kg is attached to the bottom of the spring. (a) By how much is the spring stretched when the block is slowly lowered to its equilibrium point? (b) If the elevator subsequently accelerates upward at 2.00 m/s2, what is the position of the block, taking the equilibrium position found in part (a) as y = 0 and upwards as the positive y-direction. (c) If the elevator cable snaps during the acceleration, describe the subsequent motion of the block relative to the freely falling elevator. What is the amplitude of its motion?arrow_forwardConsider the data for a block of mass m = 0.250 kg given in Table P16.59. Friction is negligible. a. What is the mechanical energy of the blockspring system? b. Write expressions for the kinetic and potential energies as functions of time. c. Plot the kinetic energy, potential energy, and mechanical energy as functions of time on the same set of axes. Problems 5965 are grouped. 59. G Table P16.59 gives the position of a block connected to a horizontal spring at several times. Sketch a motion diagram for the block. Table P16.59arrow_forwardA uniform wire (Y = 2.0 1011 N/m2) is subjected to a longitudinal tensile stress of 4.0 107 N/m2. What is the fractional change in the length of the wire?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
SIMPLE HARMONIC MOTION (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=XjkUcJkGd3Y;License: Standard YouTube License, CC-BY