Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN: 9781133939146
Author: Katz, Debora M.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 9, Problem 69PQ
(a)
To determine
Find the work done by the force on the crate.
(b)
To determine
The internal energy increased due to friction.
(c)
To determine
Find out the change in kinetic energy.
(d)
To determine
Find out the final speed of the crate.
Expert Solution & Answer
Trending nowThis is a popular solution!
Chapter 9 Solutions
Physics for Scientists and Engineers: Foundations and Connections
Ch. 9.4 - In the three cases shown in Figure 9.11, a force...Ch. 9.6 - Prob. 9.2CECh. 9.6 - Prob. 9.3CECh. 9.7 - Prob. 9.4CECh. 9.7 - Prob. 9.5CECh. 9.9 - Prob. 9.6CECh. 9 - Pick an isolated system for the following...Ch. 9 - Prob. 2PQCh. 9 - Prob. 3PQCh. 9 - Prob. 4PQ
Ch. 9 - Prob. 5PQCh. 9 - Prob. 6PQCh. 9 - Prob. 7PQCh. 9 - A 537-kg trailer is hitched to a truck. Find the...Ch. 9 - Prob. 9PQCh. 9 - A helicopter rescues a trapped person of mass m =...Ch. 9 - Prob. 11PQCh. 9 - An object is subject to a force F=(512i134j) N...Ch. 9 - Prob. 13PQCh. 9 - Prob. 14PQCh. 9 - Prob. 15PQCh. 9 - Prob. 16PQCh. 9 - Prob. 17PQCh. 9 - Prob. 18PQCh. 9 - Prob. 19PQCh. 9 - Prob. 20PQCh. 9 - Prob. 21PQCh. 9 - Prob. 22PQCh. 9 - A constant force of magnitude 4.75 N is exerted on...Ch. 9 - In three cases, a force acts on a particle, and...Ch. 9 - An object of mass m = 5.8 kg moves under the...Ch. 9 - A nonconstant force is exerted on a particle as it...Ch. 9 - Prob. 27PQCh. 9 - Prob. 28PQCh. 9 - Prob. 29PQCh. 9 - A particle moves in the xy plane (Fig. P9.30) from...Ch. 9 - A small object is attached to two springs of the...Ch. 9 - Prob. 32PQCh. 9 - Prob. 33PQCh. 9 - Prob. 34PQCh. 9 - Prob. 35PQCh. 9 - Prob. 36PQCh. 9 - Prob. 37PQCh. 9 - Prob. 38PQCh. 9 - A shopper weighs 3.00 kg of apples on a...Ch. 9 - Prob. 40PQCh. 9 - Prob. 41PQCh. 9 - Prob. 42PQCh. 9 - Prob. 43PQCh. 9 - Prob. 44PQCh. 9 - Prob. 45PQCh. 9 - Prob. 46PQCh. 9 - Prob. 47PQCh. 9 - Prob. 48PQCh. 9 - Prob. 49PQCh. 9 - A small 0.65-kg box is launched from rest by a...Ch. 9 - A small 0.65-kg box is launched from rest by a...Ch. 9 - A horizontal spring with force constant k = 625...Ch. 9 - A box of mass m = 2.00 kg is dropped from rest...Ch. 9 - Prob. 54PQCh. 9 - Return to Example 9.9 and use the result to find...Ch. 9 - Prob. 56PQCh. 9 - Crall and Whipple design a loop-the-loop track for...Ch. 9 - Prob. 58PQCh. 9 - Calculate the force required to pull a stuffed toy...Ch. 9 - Prob. 60PQCh. 9 - Prob. 61PQCh. 9 - Prob. 62PQCh. 9 - An elevator motor moves a car with six people...Ch. 9 - Prob. 64PQCh. 9 - Figure P9.65A shows a crate attached to a rope...Ch. 9 - Prob. 66PQCh. 9 - Prob. 67PQCh. 9 - Prob. 68PQCh. 9 - Prob. 69PQCh. 9 - Prob. 70PQCh. 9 - Prob. 71PQCh. 9 - Estimate the power required for a boxer to jump...Ch. 9 - Prob. 73PQCh. 9 - Prob. 74PQCh. 9 - Prob. 75PQCh. 9 - Prob. 76PQCh. 9 - Prob. 77PQCh. 9 - Prob. 78PQCh. 9 - Prob. 79PQCh. 9 - A block of mass m = 0.250 kg is pressed against a...Ch. 9 - On a movie set, an alien spacecraft is to be...Ch. 9 - Prob. 82PQCh. 9 - A spring-loaded toy gun is aimed vertically and...Ch. 9 - Prob. 84PQCh. 9 - The motion of a box of mass m = 2.00 kg along the...Ch. 9 - Prob. 86PQCh. 9 - Prob. 87PQCh. 9 - Prob. 88PQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) What is the efficiency of an out-of-condition professor who does 2.10105J of useful work while metabolizing 500 kcal of food energy? (b) How many food calories would a well-conditioned athlete metabolize in doing the same work with an efficiency of 20%?arrow_forwardA cat’s crinkle ball toy of mass 15 g is thrown straight up with an initial speed of 3 m/s. Assume in this problem that air drag is negligible. (a) What is the kinetic energy of the ball as it leaves the hand? (b) How much work is done by the gravitational force during the ball’s rise to its peak? (c) What is the change in the gravitational potential energy of the ball during the rise to its peak? (d) If the gravitational potential energy is taken to be zero at the point where it leaves your hand, what is the gravitational potential energy when it reaches the maximum height? (e) What if the gravitational potential energy is taken to be zero at the maximum height the ball reaches, what would the gravitational potential energy be when it leaves the hand? (f) What is the maximum height the ball reaches?arrow_forwardA block of mass m = 200 g is released from rest at point along the horizontal diameter on the inside of hemispherical bowl of radius R = 30.0 cm, and the surface of the bowl is rough (Fig. P8.23). The blocks speed at point is 1.50 m/s. Figure P8.23 (a) What is its kinetic energy at point ? (b) How much mechanical energy is transformed into internal energy as the block moves from point to point ? (c) Is it possible to determine the coefficient of friction from these results in any simple manner? (d) Explain your answer to part (c).arrow_forward
- (a) A block with a mass m is pulled along a horizontal surface for a distance x by a constant force F at an angle with respect to the horizontal. The coefficient of kinetic friction between block and table is k the force exerted by friction equal to kmg? If not, what is the force exerted by friction? (b) How much work is done by the friction force and by F? (Dont forget the signs.) (c) Identify all the forces that do no work on the block, (d) Let m = 2.00 kg, x = 4.00 m, = 37.0, F= 15.0 N, and k = 0.400, and find I the answers to parts (a) and (b). Figure P5.39arrow_forwardIntegrated Concepts (a) What force must be supplied by an elevator cable to produce an acceleration of 0.800 m/s2 against a 200-N frictional force, if the mass of the loaded elevator is 1500 kg? (b) How much work is done by the cable in lifting the elevator 20.0 m? (c) What is the final speed of the elevator if it starts from rest? (d) How much work went into thermal energy?arrow_forward(a) Calculate the work done on a 1500-kg elevator car by its cable to lift it 40.0 m at constant speed, assuming friction averages 100 N. (b) What is the work done on the lift by the gravitational force in this process? (c) What is the total work done on the lift?arrow_forward
- A side view of a half-pipe at a skateboard park is shown in Figure P8.51. Sketch a graph of the gravitational potential energy of the skateboarderEarth system as a function of position for a skateboarder who travels from the left side of the half-pipe to the right side. Let the leftmost point be where x = 0 and the lowest point in the half-pipe be where U = 0. FIGURE P8.51arrow_forwardAs a simple pendulum swings back and forth, the forces acting on the suspended object are (a) the gravitational force, (b) the tension in the supporting cord, and (c) air resistance. (i) Which of these forces, if any, does no work on the pendulum at any time? (ii) Which of these forces does negative work on the pendulum at all times during its motion?arrow_forwardSuppose that the air resistance a car encounters is independent of its speed. When the car travels at 15 m/s, its engine delivers 20 hp to its wheels. (a) What is the power delivered to the wheels when the car travels at 30 m/s? (b) How much energy does the car use in covering 10 km at 15 m/s? At 30 m/s? Assume that the engine is 25 efficient. (c) Answer the same questions if the force of air resistance is proportional to the speed of the automobile. (d) What do these results, plus your experience with gasoline consumption, tell you about air resistance?arrow_forward
- A student has the idea that the total work done on an object is equal to its final kinetic energy. Is this idea true always, sometimes, or never? Ii it is sometimes true, under what circumstances? If it is always or never true, explain why.arrow_forwardA crate of mass 10.0 kg is pulled up a rough incline with an initial speed of 1.50 m/s. The pulling force is 100 N parallel to the incline, which makes an angle of 20.0 with the horizontal. The coefficient of kinetic friction is 0.400, and the crate is pulled 5.00 m. (a) How much work is done by the gravitational force on the crate? (b) Determine the increase in internal energy of the crateincline system owing to friction. (c) How much work is done by the 100-N force on the crate? (d) What is the change in kinetic energy of the crate? (e) What is the speed of the crate after being pulled 5.00 m?arrow_forwardA horizontal force of 20 N is required to keep a 5.0 kg box traveling at a constant speed up a frictionless incline for a vertical height change of 3.0 m. (a) What Is the work done by gravity dining this change in height? (b) What Is the work done by the normal force? (c) What is the work done by the horizontal farce?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning