
Concept explainers
(a)
The speed of the block when it reaches the bottom of the curve.
(a)

Answer to Problem 77PQ
The speed of the block when it reaches the bottom of the curve is
Explanation of Solution
The energy conservation equation for a system is,
Here,
There is no friction during the motion so that the change in thermal energy will also be zero (
The total potential energy is the sum of the gravitational potential energy and the elastic potential energy.
Using the expression for the total potential energy of the system in the initial and final condition to equation (II) yields,
The initial kinetic energy of the block is zero and at the bottom of the track where
Write the expression for the final kinetic energy of the block.
Here,
Write the expression for the initial gravitational potential energy of the block.
Here,
use equation (VI) and (VII) in equation (V) and solve for
Conclusion:
Substitute
Therefore, the speed of the block when it reaches the bottom of the curve is
(b)
The magnitude of the
(b)

Answer to Problem 77PQ
The magnitude of the friction force acting on the block is
Explanation of Solution
Applying the conservation of energy condition from the moment the block reaches the bottom of the track until it finally stops. While there are no external forces performing work on the block-track system during this motion (
The initial kinetic energy in the horizontal path in the bottom is equal to the final kinetic energy calculated in part (a) that corresponds to a speed of
Modify equation (IX) using the expression for the kinetic energy.
Write the expression for the change in thermal energy.
Here,
Use equation (X) in equation (XI), and solve for
Conclusion:
Substitute
Therefore, the magnitude of the friction force acting on the block is
Want to see more full solutions like this?
Chapter 9 Solutions
Physics for Scientists and Engineers: Foundations and Connections
- Please solve this problem correctly please and be sure to provide explanation on each step so I can understand what's been done thank you. (preferrably type out everything)arrow_forwardUse a calculation to determine how far the fishing boat is from the water level .Determine distance Yarrow_forwardNo chatgpt pls will upvote Already got wrong chatgpt answerarrow_forward
- 2. 1. Tube Rating Charts Name: Directions: For the given information state if the technique is safe or unsafe and why. 60 Hertz Stator Operation Effective Focal Spot Size- 0.6 mm Peak Kilovolts MA 2 150 140 130 120 110 100 90 80 70 2501 60 50 40 30 .01 .02 .04.06 .1 .2 .4.6 1 8 10 Maximum Exposure Time In Seconds Is an exposure of 80 kVp, 0.1 second and 200 mA within the limits of the single phase, 0.6 mm focal spot tube rating chart above? Is an exposure of 100 kVp, 0.9 second and 150 mA within the limits of the single phase, 0.6 mm focal spot tube rating chart above?arrow_forwardQ: You have a CO2 laser resonator (λ = 10.6 μm). It has two curved mirrors with R₁=10m, R2= 8m, and mirror separation /= 5m. Find: R2-10 m tl Z-O 12 R1-8 m 1. Confocal parameter. b= 21w2/2 =√1 (R1-1)(R2-1)(R1+R2-21)/R1+R2-21) 2. Beam waist at t₁ & t2- 3. Waist radius (wo). 4. 5. The radius of the laser beam outside the resonator and about 0.5m from R₂- Divergence angle. 6. Radius of curvature for phase front on the mirrors R₁ & R2-arrow_forwardNo chatgpt pls will upvotearrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





