EBK ORGANIC CHEMISTRY
EBK ORGANIC CHEMISTRY
8th Edition
ISBN: 8220102744127
Author: Bruice
Publisher: PEARSON
Question
Book Icon
Chapter 8.8, Problem 15P

a)

Interpretation Introduction

Interpretation:

  • The total number of nodes in ψ3 and ψ4 molecular orbitals of 1,3- butadiene has to be predicted.

Concept Introduction:

Molecular orbitals:

Linear combination of atomic orbitals leads to the formation of molecular orbital; the number of molecular orbitals produced are equal to the number of atomic orbitals involved.

Bonding molecular orbital:

Side-to-side overlap of in-phase p-orbitals produces a pi-bonding molecular orbitals and designated as ψ1.

Anti-bonding molecular orbital:

The side-to-side interaction between out-of-phase p-orbitals produces a π* anti-bonding molecular orbital.

b)

Interpretation Introduction

Interpretation:

  • The symmetric and anti-symmetric molecular orbitals of 1,3- butadiene to be predicted.

Concept Introduction:

Molecular orbitals:

Linear combination of atomic orbitals leads to the formation of molecular orbital; the number of molecular orbitals produced are equal to the number of atomic orbitals involved.

Bonding molecular orbital:

Side-to-side overlap of in-phase p-orbitals produces a pi-bonding molecular orbitals and designated as ψ1.

Anti-bonding molecular orbital:

The side-to-side interaction between out-of-phase p-orbitals produces a π* anti-bonding molecular orbital.

Symmetric molecular orbitals:

The molecular orbitals that possess a internal plane of symmetry is known as symmetric molecular orbitals and the molecular orbitals that does not possess internal plane of symmetry is known as anti-symmetric molecular orbitals.

c)

Interpretation Introduction

Interpretation:

  • The HOMO and LUMO molecular orbitals of 1,3- butadiene in the ground state to be predicted.

Concept Introduction:

Molecular orbitals:

Linear combination of atomic orbitals leads to the formation of molecular orbital; the number of molecular orbitals produced are equal to the number of atomic orbitals involved.

HOMO (Highest occupied molecular orbital):

The accommodation of electrons at the highest-energy molecular orbitals is known as HOMO.

LUMO:

The lowest-energy of molecular orbitals that do not contain electrons is known as LUMO.

d)

Interpretation Introduction

Interpretation:

  • The HOMO and LUMO molecular orbitals of 1,3- butadiene in the excited state to be predicted.

Concept Introduction:

Molecular orbitals:

Linear combination of atomic orbitals leads to the formation of molecular orbital; the number of molecular orbitals produced are equal to the number of atomic orbitals involved.

HOMO (Highest occupied molecular orbital):

The accommodation of electrons at the highest-energy molecular orbitals is known as HOMO.

LUMO:

The lowest-energy of molecular orbitals that do not contain electrons are known as LUMO.

e)

Interpretation Introduction

Interpretation:

  • The relation between HOMO, LUMO and symmetric and antisymmetric orbitals are to be predicted.

Concept Introduction:

Molecular orbitals:

Linear combination of atomic orbitals leads to the formation of molecular orbital; the number of molecular orbitals produced are equal to the number of atomic orbitals involved.

HOMO (Highest occupied molecular orbital):

The accommodation of electrons at the highest-energy molecular orbitals is known as HOMO.

LUMO:

The lowest-energy of molecular orbitals that do not contain electrons are known as LUMO.

Blurred answer
Students have asked these similar questions
esc For the reaction below: 1. Draw all reasonable elimination products to the right of the arrow. 2. In the box below the reaction, redraw any product you expect to be a major product. Major Product: Explanation Check C ☐ + X NaOH Br F1 F2 80 F3 F4 F5 F6 1 ! @ 2 3 $ 4 % 5 Q W LU E S D A F7 * C Click and dr drawing a 2025 McGraw Hill LLC. All Rights Reserv ►II F8 4 F9 6 7 8 9 R T Y U LL F G H J
Calculate equilibrium concentrations for the following reaction:N2 (g) + O2 (g) ⇋ 2 NO (g) Kc = 0.10 at 2273K initially [N2] = 0.200M; [O2] = 0.200
For each scenario below, select the color of the solution using the indicator thymol blue during the titration. When you first add indicator to your Na2CO3solution, the solution is basic (pH ~10), and the color is       ["", "", "", "", ""]  . At the equivalence point for the titration, the moles of added HCl are equal to the moles of Na2CO3. One drop (or less!) past this is called the endpoint. The added HCl begins to titrate the thymol blue indicator itself.  At the endpoint, the indicator color is       ["", "", "", "", ""]  . When you weren't paying attention and added too much HCl (~12 mL extra), the color is      ["", "", "", "", ""]  . When you really weren't paying attention and reached the second equivalence point of Na2CO3, the color is

Chapter 8 Solutions

EBK ORGANIC CHEMISTRY

Ch. 8.7 - Prob. 12PCh. 8.7 - Prob. 13PCh. 8.8 - Prob. 14PCh. 8.8 - Prob. 15PCh. 8.8 - Prob. 16PCh. 8.9 - Which member of each pair is the stronger acid?Ch. 8.9 - Which member of each pair is the stronger base? a....Ch. 8.9 - Rank the following compounds from strongest acid...Ch. 8.10 - Prob. 20PCh. 8.10 - Which acid in each of the following pairs is...Ch. 8.10 - Prob. 23PCh. 8.11 - Prob. 24PCh. 8.11 - Prob. 26PCh. 8.12 - Prob. 27PCh. 8.12 - Prob. 28PCh. 8.12 - Prob. 29PCh. 8.12 - Prob. 30PCh. 8.12 - Prob. 31PCh. 8.12 - Prob. 32PCh. 8.13 - Prob. 33PCh. 8.13 - Prob. 34PCh. 8.13 - Prob. 35PCh. 8.13 - What are the major 1,2- and 1,4-addition products...Ch. 8.13 - Prob. 38PCh. 8.14 - Prob. 39PCh. 8.14 - Prob. 40PCh. 8.14 - Prob. 41PCh. 8.14 - Prob. 42PCh. 8.14 - Prob. 43PCh. 8.14 - Prob. 44PCh. 8.14 - Prob. 46PCh. 8.15 - Prob. 47PCh. 8.17 - Prob. 48PCh. 8.17 - Prob. 49PCh. 8.18 - Prob. 50PCh. 8.18 - Prob. 52PCh. 8.18 - Prob. 53PCh. 8.18 - Prob. 54PCh. 8.19 - Prob. 55PCh. 8.20 - Prob. 56PCh. 8.20 - What orbitals contain the electrons represented as...Ch. 8.20 - Prob. 59PCh. 8.20 - Prob. 60PCh. 8 - Prob. 61PCh. 8 - Prob. 62PCh. 8 - Prob. 63PCh. 8 - Prob. 64PCh. 8 - Prob. 65PCh. 8 - Prob. 66PCh. 8 - Prob. 67PCh. 8 - Prob. 68PCh. 8 - Prob. 69PCh. 8 - Prob. 70PCh. 8 - Prob. 71PCh. 8 - Prob. 72PCh. 8 - Prob. 73PCh. 8 - Which compound is the strongest base?Ch. 8 - Prob. 75PCh. 8 - Prob. 76PCh. 8 - a. The A ring (Section 3.16) of cortisone (a...Ch. 8 - Prob. 78PCh. 8 - Prob. 79PCh. 8 - Prob. 80PCh. 8 - Prob. 81PCh. 8 - Purine is a heterocyclic compound with four...Ch. 8 - Prob. 83PCh. 8 - Why is the delocalization energy of pyrrole (21...Ch. 8 - Prob. 85PCh. 8 - Prob. 86PCh. 8 - Prob. 87PCh. 8 - A student obtained two products from the reaction...Ch. 8 - Prob. 89PCh. 8 - a. How could each of the following compounds be...Ch. 8 - Draw the products obtained from the reaction of...Ch. 8 - How would the following substituents affect the...Ch. 8 - Prob. 93PCh. 8 - The acid dissociation constant (Ka) for loss of a...Ch. 8 - Protonated cyclohexylamine has a Ka = 1 1011...Ch. 8 - Draw the product or products that would be...Ch. 8 - Prob. 97PCh. 8 - Prob. 98PCh. 8 - Prob. 99PCh. 8 - Prob. 100PCh. 8 - Prob. 101PCh. 8 - a. Propose n mechanism for the following reaction:...Ch. 8 - Prob. 103PCh. 8 - As many as 18 different Diels-Alder products can...Ch. 8 - Prob. 105PCh. 8 - Prob. 106PCh. 8 - Prob. 107PCh. 8 - Prob. 108PCh. 8 - The experiment shown next and discussed in Section...Ch. 8 - Prob. 110PCh. 8 - Prob. 111PCh. 8 - Prob. 112PCh. 8 - Prob. 1PCh. 8 - Prob. 2PCh. 8 - Prob. 3PCh. 8 - Prob. 4PCh. 8 - Prob. 5PCh. 8 - Prob. 6PCh. 8 - Prob. 7PCh. 8 - Prob. 8PCh. 8 - Prob. 9PCh. 8 - Prob. 10PCh. 8 - Prob. 11PCh. 8 - Prob. 12P
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Organic Chemistry: A Guided Inquiry
Chemistry
ISBN:9780618974122
Author:Andrei Straumanis
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9781305080485
Author:John E. McMurry
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning