EBK FUNDAMENTALS OF APPLIED ELECTROMAGN
7th Edition
ISBN: 8220100663659
Author: ULABY
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 8.4, Problem 7E
A wave in air is incident upon a soil surface at θi = 50°. If soil has ϵr = 4 and μr = 1, determine Г⊥, τ⊥, Г||, and τ||.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The magnetic field of a wave propagating through a certain nonmagnetic material in the positive y direction
has an amplitude of 30 mA/m and a frequency of 10 Hz . If the wave is polarized on the positive z direction
and its wavelength is 12.6 meter, find the wavenumber. Assume the initial phase is 0.
Select one:
O a.
rad/m
12.6
O b. 2 m/sec
12.6
O c. 108 rad/m
O d. 108 rad/sec
A medium has a complex impedance having a phase of Theta. The time averaged power of a TEM wave travelling in this medium will be dependent on:
cos(0.5*Theta)
sine(0.5*Theta)
tan(0.5*Theta)
cos(Theta)
sine(Theta)
tan(Theta)
cos(2*Theta)
sine(2*Theta)
tan(2*Theta)
none of these
The magnetic field of a wave
propagating through a certain
nonmagnetic material in the negative
z direction has an amplitude of
45mA/m and a frequency of
10° Hz. If the wave is polarized on
the positive x direction and the
phase velocity of the wave is
10°m/s. Assume the initial phase
is 30°.
Find the wave number.
Select one:
O a. The wave number is: 67
O b. The wave number is: 2T
O c. The wave number is: 2.5
O d. The wave number is: 7.6
Chapter 8 Solutions
EBK FUNDAMENTALS OF APPLIED ELECTROMAGN
Ch. 8.1 - Prob. 1CQCh. 8.1 - In the radar radome design of Example 8-1, all the...Ch. 8.1 - Explain on the basis of boundary conditions why it...Ch. 8.1 - Prob. 1ECh. 8.1 - Prob. 2ECh. 8.1 - Obtain expressions for the average power densities...Ch. 8.2 - In the visible part of the electromagnetic...Ch. 8.2 - If the light source of Exercise 8-4 is situated at...Ch. 8.3 - If the index of refraction of the cladding...Ch. 8.4 - Prob. 4CQ
Ch. 8.4 - What is the difference between the boundary...Ch. 8.4 - Why is the Brewster angle also called the...Ch. 8.4 - At the boundary, the vector sum of the tangential...Ch. 8.4 - A wave in air is incident upon a soil surface at i...Ch. 8.4 - Determine the Brewster angle for the boundary of...Ch. 8.4 - Prob. 9ECh. 8.8 - What are the primary limitations of coaxial cables...Ch. 8.8 - Can a TE mode have a zero magnetic field along the...Ch. 8.8 - What is the rationale for choosing a solution for...Ch. 8.8 - What is an evanescent wave?Ch. 8.8 - For TE waves, the dominant mode is TE10, but for...Ch. 8.8 - Prob. 10ECh. 8.8 - Prob. 11ECh. 8.8 - Prob. 12ECh. 8.10 - Why is it acceptable for up to exceed the speed of...Ch. 8.10 - Prob. 13ECh. 8.10 - Prob. 14ECh. 8 - A plane wave in air with an electric field...Ch. 8 - A plane wave traveling in medium 1 with r1 = 2.25...Ch. 8 - A plane wave traveling in a medium with r1 = 9 is...Ch. 8 - A 200 MHz, left-hand circularly polarized plane...Ch. 8 - Prob. 5PCh. 8 - A 50 MHz plane wave with electric field amplitude...Ch. 8 - What is the maximum amplitude of the total...Ch. 8 - Repeat Problem 8.6, but replace the dielectric...Ch. 8 - Prob. 9PCh. 8 - Prob. 10PCh. 8 - Repeat Problem 8.10, but interchange r1 and r3.Ch. 8 - Orange light of wavelength 0.61 m in air enters a...Ch. 8 - A plane wave of unknown frequency is normally...Ch. 8 - Consider a thin film of soap in air under...Ch. 8 - A 5 MHz plane wave with electric field amplitude...Ch. 8 - Prob. 16PCh. 8 - Prob. 17PCh. 8 - Prob. 18PCh. 8 - Prob. 19PCh. 8 - Prob. 20PCh. 8 - Prob. 21PCh. 8 - Prob. 22PCh. 8 - Prob. 23PCh. 8 - Prob. 24PCh. 8 - Prob. 25PCh. 8 - Prob. 26PCh. 8 - A plane wave in air with E=y20ej(3x+4z) (V/m) is...Ch. 8 - Prob. 28PCh. 8 - A plane wave in air with Ei=(x9y4z6)ej(2x+3z)(V/m)...Ch. 8 - Natural light is randomly polarized, which means...Ch. 8 - A parallel-polarized plane wave is incident from...Ch. 8 - A perpendicularly polarized wave in air is...Ch. 8 - Show that the reflection coefficient can be...Ch. 8 - Prob. 34PCh. 8 - Prob. 35PCh. 8 - A 50 MHz right-hand circularly polarized plane...Ch. 8 - Consider a flat 5 mm thick slab of glass with r =...Ch. 8 - Derive Eq. (8.89b).Ch. 8 - Prob. 39PCh. 8 - A TE wave propagating in a dielectric-filled...Ch. 8 - Prob. 41PCh. 8 - Prob. 42PCh. 8 - Prob. 43PCh. 8 - Prob. 44PCh. 8 - Prob. 45PCh. 8 - Prob. 46PCh. 8 - Prob. 47P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Magnetic field intensity of a propagating wave in free space is given by H=0.3 cos(4*10°t- 2y) ax V/m the plot of H versus y at time, t = T/8 A H F0.3arrow_forwardMagnetic field intensity of a propagating wave in free space is given by H=0.3 cos(4*10°t+ 2y) ax V/m the plot of H versus y at time, t = T/4 None of these 4H F0.3 4H 0.3-arrow_forwardA standing wave with wavelength A = 1.2 m and frequencyf = 50 Hz is generated on a stretched cord. For an element of the cord at x = 0.5 m, the maximum transverse %3D velocity is v(y,max) = 2Tt m/s. The amplitude A of each of the individual waves producing %3D the standing wave is: O 0.03 m 0.01 m 0.025 m 0.02 m 0.0125 marrow_forward
- For a non-magnetic material having e, = 2.25, o = 10-4 Find the intrinsic impedance for a wave having a frequency of 2.5 MHz. O 25.4490.09° 0 O 254490.09° 25.449.09° 0 O 254.049.09° 0,arrow_forwardTwo identical traveling waves of the form Acos(kx - ωt+ø) are moving in the same direction and are out of phase by ø=π/2 radians. If the amplitude of each wave is 4 cm what is is the amplitude of the superposition of the two waves. Use the trig identity Acos(x) + Acos(y) = 2Acos(x+y)/2)cos((x-y)/2). Substitute x = kx - ωt and y = kx - ωt + ø and you get 2Acos(ø/2)cos(kx - ωt + ø/2). The amplitude of the superposition wave is 2Acos(ø/2). Plug in ø=π/2 radians and the amplitude of the traveling waves to get your answer. Make sure your calculator is set to radians.arrow_forwardAn electromagnetic wave of the form E = 2 Sin(kx – wt)î B Cos(kx – wt)j travels though a media with & = 2 l =1 at 9Hz. What is the waves velocity?arrow_forward
- A1arrow_forwardA sinusoidal sound wave moves through a medium and is described by the displacement wave function s(x,t)= 2.00 cos (15.7x-858t), where s in micrometers, x is in meters, and t is in seconds. Calculate the amplitude, wavelength and the speed of the wave.arrow_forwardGiven a wave with e = â„20e¹ª cos (10ºt + 4x). 4x a) Identify a and B. b) What medium is this (good conductor, quasi-conductor, good dielectric)? Justify your answer. c) Find phase velocity d) Find wave impedance n. e) Draw ây, âk, ⃠and ãä on the xz plane.arrow_forward
- A uniform plane wave in air is given by: E, -50 sin (@-6x-82), then the = wavelength of the wave is a. π/5 b. π/6 C. 10 d. π/8 e. Nonearrow_forwardThe magnetic field component of a plane wave in a lossless dielectric is H = 30 sin (2nx 10°t – 5z) a, mA/m a. If u=1 find b. Determine the direction of wave propagation c. Determine the polarization of the wave. d. Calculate the wavelength and wave velocity. e. Determine the wave impedance. f. Find the corresponding electric field component. g. Find the displacement current density. Er.arrow_forwardPlease help me solve this using P=1/2 Re (E.H*)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,
What Is a Plane Wave? — Lesson 2; Author: EMViso;https://www.youtube.com/watch?v=ES2WFevGM0g;License: Standard Youtube License