EBK FUNDAMENTALS OF APPLIED ELECTROMAGN
7th Edition
ISBN: 8220100663659
Author: ULABY
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 8, Problem 19P
To determine
The fraction of the power density carried by the ray incident upon the top prism emerges from the bottom prism.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A 10-V/m, 100 MHz uniform plane wave is incident on a two-word line as shown in Fig. P8.2.3. Determine the induced voltage V if the cable has a per-unit-length capacitance of 50 pF/m.
Question Post-2: Figure 8. 18 shows a time trace of a square wave produced by a function
generator
a) What is the period of the waveform?
b) What is the peak-peak amplitude of the waveform?
c) What is the frequency of the function generator?
Tek
Мис
T Trig'd
T
CH1 200mV
M 1.00ms
M Pos: -320.0,us
Figure 8. 18
CH1
Coupling
DC
BW Limit
Off
60MHz
Volts/Div
Coarse
Probe
1X
Invert
Off
CH1 4.11mV
A flat luminaire with dimensions 1.2 x 0.2m is mounted in a ceiling. The fixture has an opal plastic plate at the bottom, and can be considered ideal diffused.
On a wall in the room there is a picture with dimensions 0.4m x 0.4m, as shown in the figure. The measurements apply from the midpoint of fixture and picture.
The luminous flux of the light source is 6200 lm. The luminous intensity normally from the bottom of the luminaire is 1400 cd.
a) Determine the luminous flux going out of the luminaire. What is the luminaire's efficiency?
Chapter 8 Solutions
EBK FUNDAMENTALS OF APPLIED ELECTROMAGN
Ch. 8.1 - Prob. 1CQCh. 8.1 - In the radar radome design of Example 8-1, all the...Ch. 8.1 - Explain on the basis of boundary conditions why it...Ch. 8.1 - Prob. 1ECh. 8.1 - Prob. 2ECh. 8.1 - Obtain expressions for the average power densities...Ch. 8.2 - In the visible part of the electromagnetic...Ch. 8.2 - If the light source of Exercise 8-4 is situated at...Ch. 8.3 - If the index of refraction of the cladding...Ch. 8.4 - Prob. 4CQ
Ch. 8.4 - What is the difference between the boundary...Ch. 8.4 - Why is the Brewster angle also called the...Ch. 8.4 - At the boundary, the vector sum of the tangential...Ch. 8.4 - A wave in air is incident upon a soil surface at i...Ch. 8.4 - Determine the Brewster angle for the boundary of...Ch. 8.4 - Prob. 9ECh. 8.8 - What are the primary limitations of coaxial cables...Ch. 8.8 - Can a TE mode have a zero magnetic field along the...Ch. 8.8 - What is the rationale for choosing a solution for...Ch. 8.8 - What is an evanescent wave?Ch. 8.8 - For TE waves, the dominant mode is TE10, but for...Ch. 8.8 - Prob. 10ECh. 8.8 - Prob. 11ECh. 8.8 - Prob. 12ECh. 8.10 - Why is it acceptable for up to exceed the speed of...Ch. 8.10 - Prob. 13ECh. 8.10 - Prob. 14ECh. 8 - A plane wave in air with an electric field...Ch. 8 - A plane wave traveling in medium 1 with r1 = 2.25...Ch. 8 - A plane wave traveling in a medium with r1 = 9 is...Ch. 8 - A 200 MHz, left-hand circularly polarized plane...Ch. 8 - Prob. 5PCh. 8 - A 50 MHz plane wave with electric field amplitude...Ch. 8 - What is the maximum amplitude of the total...Ch. 8 - Repeat Problem 8.6, but replace the dielectric...Ch. 8 - Prob. 9PCh. 8 - Prob. 10PCh. 8 - Repeat Problem 8.10, but interchange r1 and r3.Ch. 8 - Orange light of wavelength 0.61 m in air enters a...Ch. 8 - A plane wave of unknown frequency is normally...Ch. 8 - Consider a thin film of soap in air under...Ch. 8 - A 5 MHz plane wave with electric field amplitude...Ch. 8 - Prob. 16PCh. 8 - Prob. 17PCh. 8 - Prob. 18PCh. 8 - Prob. 19PCh. 8 - Prob. 20PCh. 8 - Prob. 21PCh. 8 - Prob. 22PCh. 8 - Prob. 23PCh. 8 - Prob. 24PCh. 8 - Prob. 25PCh. 8 - Prob. 26PCh. 8 - A plane wave in air with E=y20ej(3x+4z) (V/m) is...Ch. 8 - Prob. 28PCh. 8 - A plane wave in air with Ei=(x9y4z6)ej(2x+3z)(V/m)...Ch. 8 - Natural light is randomly polarized, which means...Ch. 8 - A parallel-polarized plane wave is incident from...Ch. 8 - A perpendicularly polarized wave in air is...Ch. 8 - Show that the reflection coefficient can be...Ch. 8 - Prob. 34PCh. 8 - Prob. 35PCh. 8 - A 50 MHz right-hand circularly polarized plane...Ch. 8 - Consider a flat 5 mm thick slab of glass with r =...Ch. 8 - Derive Eq. (8.89b).Ch. 8 - Prob. 39PCh. 8 - A TE wave propagating in a dielectric-filled...Ch. 8 - Prob. 41PCh. 8 - Prob. 42PCh. 8 - Prob. 43PCh. 8 - Prob. 44PCh. 8 - Prob. 45PCh. 8 - Prob. 46PCh. 8 - Prob. 47P
Knowledge Booster
Similar questions
- Which of the following statements is not true about the linear polarization technique? a) Measurements begin at-20 mV from OCP and end around +100 mV from OCP b) The slope of the plot is AE/AC is given in volts/amperes or mV/mA c) This technique can be used to determine very low rate of corrosion d) It can be used to monitor corrosion rate in process plantarrow_forwardFigure: structure of a thin film silicon solar cell. Glass Front ITO i (aSi:H) back ZnO:AI 1-D PC The figure above shows a schematic overview of an thin film single junction solar cell. Upon what principle is the back reflector of this solar cell based? The principle of the back reflector is based on refractive scattering. ) The principle of the back reflector is based on diffractive scattering. ) The principle of the back reflector is based on constructive/destructive interference. The principle of the back reflector is based on plasmonic scatteringarrow_forwardthis question is related to optoelectronics. Define a wavevector and give its mathematical relation.arrow_forward
- Consider a GaAs LED with a refractive index of 3.66. The LED's surface is coated with a dielectric with a refractive index of 2.07. Some of the emitted photons are not transmitted due to internal reflection. What is the minimum angle of incidence for total internal reflection to occur? Express your answer in degree (º).arrow_forwardConsider a GaAs LED with a refractive index of 3.66. The LED's surface is coated with a dielectric with a refractive index of 2.07. Some of the emitted photons are not transmitted due to internal reflection. What is the minimum angle of incidence for total internal reflection to occur? Express your answer in degree (°).arrow_forward*:For a certain mode, in a rectangular waveguide, propagation occurs for signals Information are not sufficient to decide O Whose frequency is above the cut off frequency Whose frequency is below the cut off frequency Depending on the dimensions of the waveguide and dielectric O The dominant mode of propagation is preferred with rectangular waveguides * because we can use air as dielectric O it is easier than other modes and leads to smallest dimension of waveguide it is easier than the other modes it leads to smallest dimension of waveguide none of metionedarrow_forward
- Calculate the mathematical expression of the signal on the oscilloscope screen given in the figure. The position of the GND line is marked on the screenshot. Volts / Div = 4 V and Time / Div = 6.5ms. wwww www www w barrow_forwardPlease solve 1arrow_forwardI need the answer as soon as possiblearrow_forward
- A layer of dielectric with a refractive index of 1.64 is deposited on the surface of a GaAs homojunction LED. Calculate the reflection coefficient for light incident at perpendicular to the semiconductor dielectric interface. The refractive index of GaAs is 3.66. Provide your answer to 2 d.p.arrow_forwardA rectangular waveguide has dimensions a = 6 cm and b = 4 cm.a) Over what range of frequencies will the guide operate single mode?b) Over what frequency range will the guide support both TE10 and TE01modes and no others?arrow_forwardIn a Young's interference experiment, the distance between two slits is 0.5 mm and a perpendicular distance between slits and observation screen is 1 m. www. 1) When the plane incident light beam has a wavelength of 600 nm, what are the locations of the 1st and the 3rd order of interference pattern maxima as well as the distance between two maxima on the observation screen? 2) When using the second incident light to repeat above Young's experiment, one observes that location of the 4th order of interference pattern maxima is the same as the location of the 3rd order of the maximum interference pattern when using the previous light (λ = 600 nm). What is the wavelength of the second light beam?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,