EBK FUNDAMENTALS OF APPLIED ELECTROMAGN
7th Edition
ISBN: 8220100663659
Author: ULABY
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 8, Problem 28P
(a)
To determine
The polarization of the incident wave.
(b)
To determine
The angle of incidence.
(c)
To determine
The time domain expression for the reflected electric and magnetic fields.
(d)
To determine
The time domain expression for the transmitted electric and magnetic field.
(e)
To determine
The average power density by the wave carried into the dielectric medium.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
This question is about Wave propagation and I want to answer in 20 minutes
If a wave propagating in z-direction and incident on the air-glass interface at z= 0, plot the E field (amplitudes only) in the yz plane (plane of incidence) for :a. TE incidenceb. TM incidence
Take -2lambda<y,z<2lambda for plotting. (Take lambda of your own choice. Amplitude = 1V/m.) If the angle of incidence is 30 degrees in the above case, what should be the E field distribution?
for non magnetic material having relative permeability of 2.25 sigma= 10^-4 S/m. find loss tangent, attenuation constant, phase constant, and intrinsic impedance for a wave having a frequency of 2.5MHz. assume material to be a good dielectric.
Chapter 8 Solutions
EBK FUNDAMENTALS OF APPLIED ELECTROMAGN
Ch. 8.1 - Prob. 1CQCh. 8.1 - In the radar radome design of Example 8-1, all the...Ch. 8.1 - Explain on the basis of boundary conditions why it...Ch. 8.1 - Prob. 1ECh. 8.1 - Prob. 2ECh. 8.1 - Obtain expressions for the average power densities...Ch. 8.2 - In the visible part of the electromagnetic...Ch. 8.2 - If the light source of Exercise 8-4 is situated at...Ch. 8.3 - If the index of refraction of the cladding...Ch. 8.4 - Prob. 4CQ
Ch. 8.4 - What is the difference between the boundary...Ch. 8.4 - Why is the Brewster angle also called the...Ch. 8.4 - At the boundary, the vector sum of the tangential...Ch. 8.4 - A wave in air is incident upon a soil surface at i...Ch. 8.4 - Determine the Brewster angle for the boundary of...Ch. 8.4 - Prob. 9ECh. 8.8 - What are the primary limitations of coaxial cables...Ch. 8.8 - Can a TE mode have a zero magnetic field along the...Ch. 8.8 - What is the rationale for choosing a solution for...Ch. 8.8 - What is an evanescent wave?Ch. 8.8 - For TE waves, the dominant mode is TE10, but for...Ch. 8.8 - Prob. 10ECh. 8.8 - Prob. 11ECh. 8.8 - Prob. 12ECh. 8.10 - Why is it acceptable for up to exceed the speed of...Ch. 8.10 - Prob. 13ECh. 8.10 - Prob. 14ECh. 8 - A plane wave in air with an electric field...Ch. 8 - A plane wave traveling in medium 1 with r1 = 2.25...Ch. 8 - A plane wave traveling in a medium with r1 = 9 is...Ch. 8 - A 200 MHz, left-hand circularly polarized plane...Ch. 8 - Prob. 5PCh. 8 - A 50 MHz plane wave with electric field amplitude...Ch. 8 - What is the maximum amplitude of the total...Ch. 8 - Repeat Problem 8.6, but replace the dielectric...Ch. 8 - Prob. 9PCh. 8 - Prob. 10PCh. 8 - Repeat Problem 8.10, but interchange r1 and r3.Ch. 8 - Orange light of wavelength 0.61 m in air enters a...Ch. 8 - A plane wave of unknown frequency is normally...Ch. 8 - Consider a thin film of soap in air under...Ch. 8 - A 5 MHz plane wave with electric field amplitude...Ch. 8 - Prob. 16PCh. 8 - Prob. 17PCh. 8 - Prob. 18PCh. 8 - Prob. 19PCh. 8 - Prob. 20PCh. 8 - Prob. 21PCh. 8 - Prob. 22PCh. 8 - Prob. 23PCh. 8 - Prob. 24PCh. 8 - Prob. 25PCh. 8 - Prob. 26PCh. 8 - A plane wave in air with E=y20ej(3x+4z) (V/m) is...Ch. 8 - Prob. 28PCh. 8 - A plane wave in air with Ei=(x9y4z6)ej(2x+3z)(V/m)...Ch. 8 - Natural light is randomly polarized, which means...Ch. 8 - A parallel-polarized plane wave is incident from...Ch. 8 - A perpendicularly polarized wave in air is...Ch. 8 - Show that the reflection coefficient can be...Ch. 8 - Prob. 34PCh. 8 - Prob. 35PCh. 8 - A 50 MHz right-hand circularly polarized plane...Ch. 8 - Consider a flat 5 mm thick slab of glass with r =...Ch. 8 - Derive Eq. (8.89b).Ch. 8 - Prob. 39PCh. 8 - A TE wave propagating in a dielectric-filled...Ch. 8 - Prob. 41PCh. 8 - Prob. 42PCh. 8 - Prob. 43PCh. 8 - Prob. 44PCh. 8 - Prob. 45PCh. 8 - Prob. 46PCh. 8 - Prob. 47P
Knowledge Booster
Similar questions
- Electric field phasor of a uniform planar wave arriving in an arbitrary direction from the air to a boundary surface at z = 0 E = û10e jv2x(x+y) Since it is V/m, what is the frequency of the wave in %3D %3D MHz?arrow_forwardProblem [7] An electromagnetic wave is propagating in a medium in the x direction. Magnitude of the electric field is measured as 12V/m at x=4m and it is measured as 8V/m at x=10m. Find the skin depth.arrow_forwardplease provide a reflection on this problem.arrow_forward
- Handwrite and step by step solutionsarrow_forwardThe electric field component of a y-polarized plane wave is given as Ey(z)=Aexp(-az-jßz). This wave propagates with a frequency of 831MHZ in a homogeneous, linear medium with a relative magnetic permeability of 1, a relative dielectric permeability of 3.3 and a conductivity of 2.8. If the electric field amplitude is 90V in the z=0 plane, what happens at the z=1cm distance?arrow_forwardSolve itarrow_forward
- 4. The electric field intensity of a wave propagating through a certain nonmagnetic material is given by E = 2sin(3t-2x) (V/m). Find the direction of the wave, the phase velocity, the wavelength in the material, the relative permittivity of the material, and the magnetic field intensity.arrow_forward1)Find the skin depth of an electromagnetic wave which is incident from air to a conductor and the frequency of the wave was 50 Hz with a permeability of 4.55*10-2.The conductivity in the conductor is given as 2.22. Select one: a.0 b. 0.15 c. 0.35 d. 0.25arrow_forwardA plane wave of unknown frequency is normally incident in air upon the surface of a perfect conductor. Using an electric-field meter, it is determined that the total electric field in the air medium is always zero when measured at a distance of 2.5m from the conductor surface. Moreover, no such nulls were observed at distances closer to the conductor. What is the frequency of the incident wave?arrow_forward
- A rectangular copper block is depth d along z, width w along y, and length / along x. In response to a wave incident upon the block from above, a current is induced in the block in the positive x-direction. Determine the ratio of the ac resistance of the block to its dc resistance at frequency f. 0: 5.8.107.- S m /:=1.2 m d: 40 cm W: 50 cm f:=2 kHzarrow_forwardThe plane wave with a frequency of 3 GHz has a relative dielectric constant of 2.5, a loss tangent of 0.05, and travels in a non-magnetic medium. What is the phase constant of the wave?arrow_forwardAn EM wave travels in free space with the electric field component E, = 100 eKO.866v+0.52) a, V/m Determine w and Aarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,