EBK FUNDAMENTALS OF APPLIED ELECTROMAGN
7th Edition
ISBN: 8220100663659
Author: ULABY
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 8, Problem 14P
Consider a thin film of soap in air under illumination by yellow light with λ = 0.6 μm in vacuum. If the film is treated as a planar dielectric slab with ϵr = 1.72, surrounded on both sides by air, what film thickness would produce strong reflection of the yellow light at normal incidence?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
What is the critical frequency of reflection at vertical incidence if the maximum value of electron density is 1.24x106/cm3?
Electromagnetic wave is propagating through a dielectric medium with relative permeability of 2.5 and relative permittivity of 12. What will be the velocity of the electromagnetic wave?
What does the refractive index of an dielectric material refer to? Why is it complicated in some articles
Chapter 8 Solutions
EBK FUNDAMENTALS OF APPLIED ELECTROMAGN
Ch. 8.1 - Prob. 1CQCh. 8.1 - In the radar radome design of Example 8-1, all the...Ch. 8.1 - Explain on the basis of boundary conditions why it...Ch. 8.1 - Prob. 1ECh. 8.1 - Prob. 2ECh. 8.1 - Obtain expressions for the average power densities...Ch. 8.2 - In the visible part of the electromagnetic...Ch. 8.2 - If the light source of Exercise 8-4 is situated at...Ch. 8.3 - If the index of refraction of the cladding...Ch. 8.4 - Prob. 4CQ
Ch. 8.4 - What is the difference between the boundary...Ch. 8.4 - Why is the Brewster angle also called the...Ch. 8.4 - At the boundary, the vector sum of the tangential...Ch. 8.4 - A wave in air is incident upon a soil surface at i...Ch. 8.4 - Determine the Brewster angle for the boundary of...Ch. 8.4 - Prob. 9ECh. 8.8 - What are the primary limitations of coaxial cables...Ch. 8.8 - Can a TE mode have a zero magnetic field along the...Ch. 8.8 - What is the rationale for choosing a solution for...Ch. 8.8 - What is an evanescent wave?Ch. 8.8 - For TE waves, the dominant mode is TE10, but for...Ch. 8.8 - Prob. 10ECh. 8.8 - Prob. 11ECh. 8.8 - Prob. 12ECh. 8.10 - Why is it acceptable for up to exceed the speed of...Ch. 8.10 - Prob. 13ECh. 8.10 - Prob. 14ECh. 8 - A plane wave in air with an electric field...Ch. 8 - A plane wave traveling in medium 1 with r1 = 2.25...Ch. 8 - A plane wave traveling in a medium with r1 = 9 is...Ch. 8 - A 200 MHz, left-hand circularly polarized plane...Ch. 8 - Prob. 5PCh. 8 - A 50 MHz plane wave with electric field amplitude...Ch. 8 - What is the maximum amplitude of the total...Ch. 8 - Repeat Problem 8.6, but replace the dielectric...Ch. 8 - Prob. 9PCh. 8 - Prob. 10PCh. 8 - Repeat Problem 8.10, but interchange r1 and r3.Ch. 8 - Orange light of wavelength 0.61 m in air enters a...Ch. 8 - A plane wave of unknown frequency is normally...Ch. 8 - Consider a thin film of soap in air under...Ch. 8 - A 5 MHz plane wave with electric field amplitude...Ch. 8 - Prob. 16PCh. 8 - Prob. 17PCh. 8 - Prob. 18PCh. 8 - Prob. 19PCh. 8 - Prob. 20PCh. 8 - Prob. 21PCh. 8 - Prob. 22PCh. 8 - Prob. 23PCh. 8 - Prob. 24PCh. 8 - Prob. 25PCh. 8 - Prob. 26PCh. 8 - A plane wave in air with E=y20ej(3x+4z) (V/m) is...Ch. 8 - Prob. 28PCh. 8 - A plane wave in air with Ei=(x9y4z6)ej(2x+3z)(V/m)...Ch. 8 - Natural light is randomly polarized, which means...Ch. 8 - A parallel-polarized plane wave is incident from...Ch. 8 - A perpendicularly polarized wave in air is...Ch. 8 - Show that the reflection coefficient can be...Ch. 8 - Prob. 34PCh. 8 - Prob. 35PCh. 8 - A 50 MHz right-hand circularly polarized plane...Ch. 8 - Consider a flat 5 mm thick slab of glass with r =...Ch. 8 - Derive Eq. (8.89b).Ch. 8 - Prob. 39PCh. 8 - A TE wave propagating in a dielectric-filled...Ch. 8 - Prob. 41PCh. 8 - Prob. 42PCh. 8 - Prob. 43PCh. 8 - Prob. 44PCh. 8 - Prob. 45PCh. 8 - Prob. 46PCh. 8 - Prob. 47P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Q2: If light leaves a material of refractive index 1.3 and crosses an abrupt boundary into a material of refractive index 1.1. find Fresnel loss?arrow_forwardThis question is about Wave propagation and I want to answer in 20 minutesarrow_forwardAn wave is travelling through a dielectric medium whose relative permittivity is 2.8 and relative permeability is 1.8. What will be the speed of the wave?arrow_forward
- Studying foor test: The spectrum of an astronomical object has 66.12 absorption lines and two emission lines, but oddly it has a flat continuum with no peak wavelength. What kind or kinds of gas might this object have? Explain your answer by referring to Kirchoff's laws of spectroscopyarrow_forwardElectromagnetic wave is travelling through a dielectric medium with relative permittivity of 4 and relative permeability of 2.5. what will be the velocity of electromagnetic wave in that medium?arrow_forwardCompare the properties of solid and liquid dielectric materials and SF6 dielectric?arrow_forward
- At the interface between two dielectrics we want the angle with respect to the normal of the electric field in the second dielectric to be 3 times the angle in the first which is 13.8°. Determine the relative permittivity of the second dielectric if that of the first dielectric is 4.9. ..arrow_forwardConsider a GaAs LED with a refractive index of 3.66. The LED's surface is coated with a dielectric with a refractive index of 2.07. Some of the emitted photons are not transmitted due to internal reflection. What is the minimum angle of incidence for total internal reflection to occur? Express your answer in degree (°).arrow_forwardConsider a GaAs LED with a refractive index of 3.66. The LED's surface is coated with a dielectric with a refractive index of 2.07. Some of the emitted photons are not transmitted due to internal reflection. What is the minimum angle of incidence for total internal reflection to occur? Express your answer in degree (º).arrow_forward
- (b) What is the critical angle for light passing from PbO (n1= 2.67) into air (n2=1)?arrow_forwardUnpolarized light carries 2000 W/m² in air and meets an interface with plexiglas. 300W/m2 of the reflected light is found to be polarized with its electric field perpendicular to the plane of incidence, 200 W/m2 parallel to the plane of incidence. What is the net transmittance across the interface?arrow_forwardListen What are the dependable factors in the differentiation between specular and diffuse light reflection? Narrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,
Capacitors Explained - The basics how capacitors work working principle; Author: The Engineering Mindset;https://www.youtube.com/watch?v=X4EUwTwZ110;License: Standard YouTube License, CC-BY