EBK FUNDAMENTALS OF APPLIED ELECTROMAGN
7th Edition
ISBN: 8220100663659
Author: ULABY
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 8.4, Problem 9E
To determine
The proof that the incident, reflected and transmitted electric and magnetic fields have the same exponential phase function along
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The plane wave with a frequency of 3 GHz has a relative dielectric constant of 2.5, a loss tangent of 0.05, and travels in a non-magnetic medium. What is the impedance value of the wave?
238 Ohm
377 Ohm
120 Ohm
150 Ohm
handwritten please
Electromagnetics
Given the field D = 3zp cos(phi) az.
Determine DivD at P( p= 2.2, (phi)= 1.7 rad, z = 4)
4 decimals places
Chapter 8 Solutions
EBK FUNDAMENTALS OF APPLIED ELECTROMAGN
Ch. 8.1 - Prob. 1CQCh. 8.1 - In the radar radome design of Example 8-1, all the...Ch. 8.1 - Explain on the basis of boundary conditions why it...Ch. 8.1 - Prob. 1ECh. 8.1 - Prob. 2ECh. 8.1 - Obtain expressions for the average power densities...Ch. 8.2 - In the visible part of the electromagnetic...Ch. 8.2 - If the light source of Exercise 8-4 is situated at...Ch. 8.3 - If the index of refraction of the cladding...Ch. 8.4 - Prob. 4CQ
Ch. 8.4 - What is the difference between the boundary...Ch. 8.4 - Why is the Brewster angle also called the...Ch. 8.4 - At the boundary, the vector sum of the tangential...Ch. 8.4 - A wave in air is incident upon a soil surface at i...Ch. 8.4 - Determine the Brewster angle for the boundary of...Ch. 8.4 - Prob. 9ECh. 8.8 - What are the primary limitations of coaxial cables...Ch. 8.8 - Can a TE mode have a zero magnetic field along the...Ch. 8.8 - What is the rationale for choosing a solution for...Ch. 8.8 - What is an evanescent wave?Ch. 8.8 - For TE waves, the dominant mode is TE10, but for...Ch. 8.8 - Prob. 10ECh. 8.8 - Prob. 11ECh. 8.8 - Prob. 12ECh. 8.10 - Why is it acceptable for up to exceed the speed of...Ch. 8.10 - Prob. 13ECh. 8.10 - Prob. 14ECh. 8 - A plane wave in air with an electric field...Ch. 8 - A plane wave traveling in medium 1 with r1 = 2.25...Ch. 8 - A plane wave traveling in a medium with r1 = 9 is...Ch. 8 - A 200 MHz, left-hand circularly polarized plane...Ch. 8 - Prob. 5PCh. 8 - A 50 MHz plane wave with electric field amplitude...Ch. 8 - What is the maximum amplitude of the total...Ch. 8 - Repeat Problem 8.6, but replace the dielectric...Ch. 8 - Prob. 9PCh. 8 - Prob. 10PCh. 8 - Repeat Problem 8.10, but interchange r1 and r3.Ch. 8 - Orange light of wavelength 0.61 m in air enters a...Ch. 8 - A plane wave of unknown frequency is normally...Ch. 8 - Consider a thin film of soap in air under...Ch. 8 - A 5 MHz plane wave with electric field amplitude...Ch. 8 - Prob. 16PCh. 8 - Prob. 17PCh. 8 - Prob. 18PCh. 8 - Prob. 19PCh. 8 - Prob. 20PCh. 8 - Prob. 21PCh. 8 - Prob. 22PCh. 8 - Prob. 23PCh. 8 - Prob. 24PCh. 8 - Prob. 25PCh. 8 - Prob. 26PCh. 8 - A plane wave in air with E=y20ej(3x+4z) (V/m) is...Ch. 8 - Prob. 28PCh. 8 - A plane wave in air with Ei=(x9y4z6)ej(2x+3z)(V/m)...Ch. 8 - Natural light is randomly polarized, which means...Ch. 8 - A parallel-polarized plane wave is incident from...Ch. 8 - A perpendicularly polarized wave in air is...Ch. 8 - Show that the reflection coefficient can be...Ch. 8 - Prob. 34PCh. 8 - Prob. 35PCh. 8 - A 50 MHz right-hand circularly polarized plane...Ch. 8 - Consider a flat 5 mm thick slab of glass with r =...Ch. 8 - Derive Eq. (8.89b).Ch. 8 - Prob. 39PCh. 8 - A TE wave propagating in a dielectric-filled...Ch. 8 - Prob. 41PCh. 8 - Prob. 42PCh. 8 - Prob. 43PCh. 8 - Prob. 44PCh. 8 - Prob. 45PCh. 8 - Prob. 46PCh. 8 - Prob. 47P
Knowledge Booster
Similar questions
- Explain this don’t understand at allarrow_forwardThis is a practice problem from the Engineering Electromagnetics course in my Electrical Engineering program. Could you please walk me through the steps of solving it so that I can solve more complicated ones in the future? Thank you for your assistance.arrow_forwardGiven A=10253.13° and B=10436.87°, calculate the product in both polar and rectangular forms.arrow_forward
- Problem 6. In what situations are the group and phase velocities equal for an electromagnetic wave?arrow_forwardA medium has a complex impedance having a phase of Theta. The time averaged power of a TEM wave travelling in this medium will be dependent on: cos(0.5*Theta) sine(0.5*Theta) tan(0.5*Theta) cos(Theta) sine(Theta) tan(Theta) cos(2*Theta) sine(2*Theta) tan(2*Theta) none of thesearrow_forwardThe Subject is Electromagnetic II .arrow_forward
- If the amplitude of the magnetic field in an electromagnetic wave in free space is 24 mA/m, enter the value of the electric field magnitude, in V/m (number only please) to 3 s.f.arrow_forward1)Find the skin depth of an electromagnetic wave which is incident from air to a conductor and the frequency of the wave was 50 Hz with a permeability of 4.55*10-2.The conductivity in the conductor is given as 2.22. Select one: a.0 b. 0.15 c. 0.35 d. 0.25arrow_forwardA sinusoidal wave on a transmission line is specified by voltage and current in phasor form: Vs(z) = Voeaz ejßz and Is(z) = 1,eaz ejßzejp where Vo and I, are both real. a) In which direction does this wave propagate and why? b) Consider that a = 0, Zo 500, and the wave velocity is v, = 2.5 × 108 m/s, with w = 108 s-1. S Find the resistance (R), the admittance (G), the inductance (L), the capacitance (C), the wavelength (1) and the current phase ().arrow_forward
- The magnetic field component of a plane wave in a lossless dielectric is H = 30 sin (2nx 10°t – 5z) a, mA/m a. If u=1 find b. Determine the direction of wave propagation c. Determine the polarization of the wave. d. Calculate the wavelength and wave velocity. e. Determine the wave impedance. f. Find the corresponding electric field component. g. Find the displacement current density. Er.arrow_forwardA plane electromagnetic wave varies sinusoidally at 90.0 MHz as it travels throughvacuum along the positive x direction. The peak value of the electric field is 2.00 mV/m,and it is directed along the positive y direction.(i) Find the wavelength and period of the wave.(ii) Determine the maximum value of the magnetic field.(iii) Write expressions for the space and time variations of the electric field andmagnetic field vectors.(iv) Find the average power per unit area this wave carries through space.(v) Find the average energy density in the radiation.arrow_forwardAn electromagnetic wave in far field (plane wave) meets an aluminum device box that has no holes. Calculate the reflection losses when the wave frequency is 100 MHz and the conductivity of aluminum is 3.77 * 107 1/2m. Reflection losses can be estimated with following equation that gives loss in dB. This equation ignores multiple reflections. Zw Rloss = 20 * log 4* Zs , where Zw is wave impedance and Z, the characteristic impedance of the box.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,