In Problems 21–24 verify that the
22.
Want to see the full answer?
Check out a sample textbook solutionChapter 8 Solutions
A First Course in Differential Equations with Modeling Applications (MindTap Course List)
- 15. If A=| B = 0 1 and C = 1 0 , then find the matrix (A v B) 0 carrow_forward2. Given the following 2 x 2 linear system with constant coefficients x' = Ax (H) x= Ax+g(t), (N) where g is not the zero vector. Which of the following statements are true? Justify your answers. A. If , is a solution to (H) and 7, is a solution to (N), then , +27, is a solution to (N). B. If , and 2 are both solutions to (N), then ₁-2 is a solution to (H).arrow_forward5. Given the system X" - ()* 10 2 (a) Find the general solution. (b) Find the solution that satisfies the initial condition (x(0), y(0)) = (0, –7). Report your solution as one vector.arrow_forward
- ,solve x′= Ax by determining n linearly independent solutions of the form x(t)=eAtv.arrow_forward1. 2. 3. For which values of a and b is the following system of equations inconsistent. x+2y3z = 4 3x = y + 5z = 2 4x + y + az = b (a) a= 2 and b = 6; (d) a = 1 and b = 3; (d) A = Find the standard matrix for the operator on R² which contracts with factor 1/4, then reflects about the line y = x. 0 (a) A = 1/4 0 (₁/11) ( 0 1/4 1/4 ¹/4) 0 (b) a = 2 and b = 6; (e) None of these. (c) a 2 and b = 6; 0 1/4 - (¹/4) 0 (e) None of these (b) A = (e) None of these (c) A = The linear operator T : R³ → R³ is defined by T(x₁, x2, X3) = (W₁, W2, W3), where w₁ = 2x₁ + 4x2 + x3; W₂ = 9x2+2x3; W3 = 2x1 8x2 - 2x3. Which of the following is correct. (a) T is not one to one. (b) T is one to one but the standard matrix for T-¹ does not exist. (c) T is one to one and its standard matrix for T-¹ is (d) T is one to one and its standard matrix for T-¹ is HOLI 0 1 (88) 0 3 0 1 3 3 WIN - WIN 3 0 1 3 1 -4 3 -3 2 -3 1623arrow_forward1. Solve for x and y in xy + 8 + j(x²y + y) = 4x + 4 + j(xy² + x) A. 2, 2, B. 2,3 C. 3, 2 2. Determine the principal value of (3 + j4)¹ +² +j2 A. 0.42+j0.56 C. -0.42-j0.66, B. 0.42+j0.66 D. 0.42-j0.66 3. Using the properties of complex numbers. determine the two square roots of 3-j2 A. +1.82+j0.55, C. 1.82 + j0.55 B. +1.82±j0.55 D. +1.82 + j0.55 4. Evaluate: BE CALC 3-14 3+14 + 3+j4 3-j4 A. 2.44 +j4/ B. 2.44-j4 C. -2.44 + j4 D. 2.44 +j5 Evaluate log; (3 + j4). A. 0.6+j1.02 C. -0.6-j1.02 B. -0.6+j1.02 D. 0.6-j1.02, 6. The following three vectors are given; A = 20 +j20, B = 30/120° and C= 10+ j0, find AB/C C. 95/-50° B. 85-75% A. 70/45° D. 75/70" 7. If 100+5x/45° = 200/-e. Find x and 8. A. 24. 23.28 B. 23.28. 32.3° C. 23.28. 24.3% D. 23, 42.8° 8. Determine the principal value of cosh' (j0.5). A. In (1+j5) C. In j5 B. In (1± √5), D. In j(1 + √5) 2 5 1 = 9. In A-2B-C=0. if A= 2B-C-0. if A- and B-₁ find C |² -1 3 2 3 8 -3 8 3 91 C. A. 3 0 0 -3 -8 -8 -3 3 D. B. | 3 0 -3 10. Solve for a and b…arrow_forward
- Find two linearly independent solutions of y" + 5xy = 0 of the form y1 = 1+ a3a + a6x® + ... y2 = x + b,x* + byz7 +... Enter the first few coefficients: az = a6 b4 by = || ||arrow_forward7. Consider the invertible matrix It is given that A-1 = b11 b21 b12 b22 2 -- (EE) b31 b32 1 2 -1 -- (7) = 2 -2 A 0 1 1 (a) Find the entry b21 of A-¹ using the adjoint formula. X (b) Solve the linear system AX + 2B = 0, where X = y B = " and 0 is the zero Z matrix of the appropriate size.arrow_forwardJust 4.3arrow_forward
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage