Concept explainers
In Problems 1–8 use the method of undetermined coefficients to solve the given nonhomogeneous system.
3.
Want to see the full answer?
Check out a sample textbook solutionChapter 8 Solutions
A First Course in Differential Equations with Modeling Applications (MindTap Course List)
- 10. Find the general solution of the system of differential equations 3 -2 -2 d. X = -3 -2 -6 X dt 3 10 1 + 2tet + 3t?et + 4t°et 3 1 -3 Hint: The characteristic polymomial of the coefficient matrix is -(A- 4)²(A- 3). Moreover (:) 2 1 Xp(t) = t²et +t³et +t'e3t -1 -1 -3 is a particular solution of the system.arrow_forward(6) Solve the following system of ODES: x'+y'+x=-e- x+2y+2x+2y = 0 and x(0) = -1 and y(0) = 1 HINT: The s-space algebraic equations are s+1 -1/(s+1) 2K*} = s+2 2s+2 Y solve these equations to obtainarrow_forward4. Solve the system dt -1 with a1 (0) = 1 and 2(0) = -1.arrow_forward
- This is the first part of a two-part problem. Let P=[-: 1 5₁(t) = [(41) 5₂(t) = - sin(4t). a. Show that y₁ (t) is a solution to the system ÿ' = Pÿ by evaluating derivatives and the matrix product y(t) = = 0 [1] -4 Enter your answers in terms of the variable t. -4 sin(4t) -4 cos(4t)] ÿ₁ (t) [181-18] b. Show that y₂ (t) is a solution to the system ÿ' = Pÿ by evaluating derivatives and the matrix product Enter your answers in terms of the variable t. 04] 32(t) = [-28]|2(t) 181-181arrow_forward4. (S.10). Use Gaussian elimination with backward substitution to solve the following linear system: 2.r1 + 12 – 13 = 5, 1 + 12 – 3r3 = -9, -I1 + 12 +2r3 = 9;arrow_forwardExercise 3.6.1. Find the general solution for the system -3 x = ( 23 ) x + cos(2t) ( _ )+(²).arrow_forward
- 1. Solve x' = Ax + b, if A 4 -3 and b 2t -1 -1 -2 2 -18e3t 72e3t 54e3t 2. Solve x' = Ax + b, if A : 2 4 -1 and b 3 3. Find the general solution to the system d 1 2e2t x+ dt -1 4 e3t for 0 2arrow_forward[1 1 1] 024. The system of equations | 0 0 1x=| b, | is solvable if |0 0 1 b, (c) b, = b, (d) b, = 0 (e) none (a) h, = b, = 0 (b) b, = b, # 0 025. If A = B+C and B= B' and C' =-C, then %3D %3D (1) C = A– A" »C=÷(4- A') (6) C=;(4+A") (4) C = A+ A" (e) none c=-(4-A') (0) C = (A+ A°) («)C= A+ A°arrow_forward5. The following sets of simultaneous equations may or may not be solvable by the Gaussian Elimination method. For each case, explain why. If solvable, solve. (a) (b) (c) (d) x+y+3z=5 2x + 2y + 2z = 14 3x + 3y+9z = 15 2 -1 1] 4 1 3 2 12 3 2 3 16 2x-y+z=0 x + 3y + 2z=0 3x + 2y + 3z == 0 x₁ + x₂ + x3-X₂ = 2 x1-x₂-x₂ + x₁ = 0 2x₁ + x₂-x3 + 2x4 = 9 3x₁ + x₂ + 2x3-X4 = 7arrow_forward
- Discrete Mathematics and Its Applications ( 8th I...MathISBN:9781259676512Author:Kenneth H RosenPublisher:McGraw-Hill EducationMathematics for Elementary Teachers with Activiti...MathISBN:9780134392790Author:Beckmann, SybillaPublisher:PEARSON
- Thinking Mathematically (7th Edition)MathISBN:9780134683713Author:Robert F. BlitzerPublisher:PEARSONDiscrete Mathematics With ApplicationsMathISBN:9781337694193Author:EPP, Susanna S.Publisher:Cengage Learning,Pathways To Math Literacy (looseleaf)MathISBN:9781259985607Author:David Sobecki Professor, Brian A. MercerPublisher:McGraw-Hill Education