A First Course in Differential Equations with Modeling Applications (MindTap Course List)
11th Edition
ISBN: 9781305965720
Author: Dennis G. Zill
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 8.3, Problem 6E
To determine
To solve: The given non-homogeneous system using the method of undetermined coefficient.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
These are Exact deferential equation related problems.
For each dif erential equation in Problems 1–21, find the general solutionby finding the homogeneous solution and a particular solution.
Please DO NOT YOU THE PI method where 1/f(r) * x. Dont do that.
Instead do this, assume for yp = to something, do the 1 and 2 derivative of it and then plug it in the equation to find the answer.
Example 11. Verify that y(t) = -2 cos(4t)+sin(4t)
is a solution of the IVP of second order
y" +16y=0, y) = -2, V()=1
Chapter 8 Solutions
A First Course in Differential Equations with Modeling Applications (MindTap Course List)
Ch. 8.1 - In Problems 16 write the given linear system in...Ch. 8.1 - In Problems 16 write the given linear system in...Ch. 8.1 - In Problems 16 write the given linear system in...Ch. 8.1 - In Problems 16 write the given linear system in...Ch. 8.1 - In Problems 16 write the given linear system in...Ch. 8.1 - Prob. 6ECh. 8.1 - In Problems 710 write the given linear system...Ch. 8.1 - In Problems 710 write the given linear system...Ch. 8.1 - In Problems 16 write the given linear system in...Ch. 8.1 - Prob. 10E
Ch. 8.1 - In Problems 1116 verify that the vector X is a...Ch. 8.1 - Prob. 12ECh. 8.1 - In Problems 1116 verify that the vector X is a...Ch. 8.1 - In Problems 1116 verify that the vector X is a...Ch. 8.1 - In Problems 1116 verify that the vector X is a...Ch. 8.1 - In Problems 1116 verify that the vector X is a...Ch. 8.1 - In Problems 1720 the given vectors are solutions...Ch. 8.1 - In Problems 1720 the given vectors are solutions...Ch. 8.1 - In Problems 1720 the given vectors are solutions...Ch. 8.1 - In Problems 1720 the given vectors are solutions...Ch. 8.1 - In Problems 2124 verify that the vector Xp is a...Ch. 8.1 - In Problems 2124 verify that the vector Xp is a...Ch. 8.1 - In Problems 2124 verify that the vector Xp is a...Ch. 8.1 - In Problems 2124 verify that the vector Xp is a...Ch. 8.1 - Prove that the general solution of the homogeneous...Ch. 8.1 - Prove that the general solution of the...Ch. 8.2 - In Problems 112 find the general solution of the...Ch. 8.2 - In Problems 112 find the general solution of the...Ch. 8.2 - In Problems 112 find the general solution of the...Ch. 8.2 - Prob. 4ECh. 8.2 - In Problems 112 find the general solution of the...Ch. 8.2 - In Problems 112 find the general solution of the...Ch. 8.2 - Distinct Real Eigenvalues In Problems 112 find the...Ch. 8.2 - Distinct Real Eigenvalues In Problems 112 find the...Ch. 8.2 - Prob. 9ECh. 8.2 - Prob. 10ECh. 8.2 - Distinct Real Eigenvalues In Problems 112 find the...Ch. 8.2 - Distinct Real Eigenvalues In Problems 1-12 find...Ch. 8.2 - In Problems 13 and 14 solve the given...Ch. 8.2 - In Problems 13 and 14 solve the given...Ch. 8.2 - In Problem 27 of Exercises 4.9 you were asked to...Ch. 8.2 - (a) Use computer software to obtain the phase...Ch. 8.2 - Find phase portraits for the systems in Problems 2...Ch. 8.2 - In Problems 2130 find the general solution of the...Ch. 8.2 - In Problems 2130 find the general solution of the...Ch. 8.2 - In Problems 2130 find the general solution of the...Ch. 8.2 - Prob. 24ECh. 8.2 - Prob. 25ECh. 8.2 - Prob. 26ECh. 8.2 - In Problems 2130 find the general solution of the...Ch. 8.2 - In Problems 2130 find the general solution of the...Ch. 8.2 - In Problems 2130 find the general solution of the...Ch. 8.2 - In problem 2130 find the general solution of the...Ch. 8.2 - In problem 3132 solve the given initial-value...Ch. 8.2 - Prob. 32ECh. 8.2 - Show that the 5 5 matrix...Ch. 8.2 - Prob. 34ECh. 8.2 - In Problems 3546 find the general solution of the...Ch. 8.2 - In Problems 3546 find the general solution of the...Ch. 8.2 - In Problems 35 46 find the general solution of the...Ch. 8.2 - In Problems 3546 find the general solution of the...Ch. 8.2 - In Problems 3546 find the general solution of the...Ch. 8.2 - In Problems 3546 find the general solution of the...Ch. 8.2 - In Problems 3546 find the general solution of the...Ch. 8.2 - Prob. 42ECh. 8.2 - Prob. 43ECh. 8.2 - Prob. 44ECh. 8.2 - Prob. 45ECh. 8.2 - In Problems 3546 find the general solution of the...Ch. 8.2 - In Problems 47 and 48 solve the given...Ch. 8.2 - In Problems 47 and 48 solve the given...Ch. 8.2 - Prob. 49ECh. 8.2 - Prob. 50ECh. 8.2 - 38. dxdt=4x+5ydydt=2x+6y 39. X = (4554)X 40. X =...Ch. 8.2 - Prob. 53ECh. 8.2 - Show that the 5 5 matrix...Ch. 8.2 - Prob. 55ECh. 8.2 - Examine your phase portraits in Problem 51. Under...Ch. 8.3 - In Problems 18 use the method of undetermined...Ch. 8.3 - Prob. 2ECh. 8.3 - In Problems 18 use the method of undetermined...Ch. 8.3 - In Problems 18 use the method of undetermined...Ch. 8.3 - In Problems 18 use the method of undetermined...Ch. 8.3 - Prob. 6ECh. 8.3 - In Problems 18 use the method of undetermined...Ch. 8.3 - In Problems 18 use the method of undetermined...Ch. 8.3 - In Problems 9 and 10, solve the given...Ch. 8.3 - Prob. 10ECh. 8.3 - Prob. 11ECh. 8.3 - (a) The system of differential equations for the...Ch. 8.3 - In Problems 1332 use variation of parameters to...Ch. 8.3 - Prob. 14ECh. 8.3 - In Problems 1332 use variation of parameters to...Ch. 8.3 - Prob. 16ECh. 8.3 - In Problems 1332 use variation of parameters to...Ch. 8.3 - In Problems 1332 use variation of parameters to...Ch. 8.3 - Prob. 19ECh. 8.3 - Prob. 20ECh. 8.3 - In Problems 1332 use variation of parameters to...Ch. 8.3 - Prob. 22ECh. 8.3 - Prob. 23ECh. 8.3 - In Problems 1332 use variation of parameters to...Ch. 8.3 - In Problems 1332 use variation of parameters to...Ch. 8.3 - Prob. 26ECh. 8.3 - Prob. 27ECh. 8.3 - In Problems 1332 use variation of parameters to...Ch. 8.3 - In Problems 1332 use variation of parameters to...Ch. 8.3 - In Problems 1332 use variation of parameters to...Ch. 8.3 - Prob. 31ECh. 8.3 - In Problems 1332 use variation of parameters to...Ch. 8.3 - Prob. 33ECh. 8.3 - In Problems 33 and 34 use (14) to solve the given...Ch. 8.3 - The system of differential equations for the...Ch. 8.3 - Prob. 36ECh. 8.4 - In problem 1 and 2 use (3) to compute eAt and...Ch. 8.4 - Prob. 2ECh. 8.4 - Prob. 3ECh. 8.4 - Prob. 4ECh. 8.4 - Prob. 5ECh. 8.4 - Prob. 6ECh. 8.4 - Prob. 7ECh. 8.4 - Prob. 8ECh. 8.4 - In problem 912 use (5) to find the general...Ch. 8.4 - Prob. 10ECh. 8.4 - Prob. 11ECh. 8.4 - Prob. 12ECh. 8.4 - Prob. 13ECh. 8.4 - Prob. 14ECh. 8.4 - In problem 1518 use the method of Example 2 to...Ch. 8.4 - In problem 1518 use the method of Example 2 to...Ch. 8.4 - In problem 1518 use the method of Example 2 to...Ch. 8.4 - Prob. 18ECh. 8.4 - Let P denote a matrix whose columns are...Ch. 8.4 - Prob. 20ECh. 8.4 - Prob. 21ECh. 8.4 - Prob. 22ECh. 8.4 - Prob. 23ECh. 8.4 - Prob. 24ECh. 8.4 - Prob. 25ECh. 8.4 - A matrix A is said to be nilpotent if there exists...Ch. 8 - fill in the blanks. 1. The vector X=k(45) is a...Ch. 8 - fill in the blanks. The vector...Ch. 8 - Consider the linear system X=(466132143)X. Without...Ch. 8 - Consider the linear system X = AX of two...Ch. 8 - In Problems 514 solve the given linear system. 5....Ch. 8 - In Problems 514 solve the given linear system. 6....Ch. 8 - In Problems 514 solve the given linear system. 7....Ch. 8 - In Problems 514 solve the given linear system. 8....Ch. 8 - Prob. 9RECh. 8 - Prob. 10RECh. 8 - In Problems 514 solve the given linear system. 11....Ch. 8 - Prob. 12RECh. 8 - Prob. 13RECh. 8 - Prob. 14RECh. 8 - (a) Consider the linear system X = AX of three...Ch. 8 - Prob. 16RE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- Do question number 2 as soon as possiblearrow_forwardDo question number 3arrow_forwardFind a linear second-order differential equation F(x, y, y', y") = 0 for which y = c₁x + c₂x² is a two- parameter family of solutions. Make sure that your equa- tion is free of the arbitrary parameters c₁ and c₂. Qualitative information about a solution y = (x) of a differential equation can often be obtained from the equation itself. Before working Problems 55–58, recall the geometric significance of the derivatives dy/dx and d²y/dx².arrow_forward
- 2. Solve the yk+2+9Yk = 4k + cos 3k using method of undetermined coef- ficients.arrow_forwardQ. 67-75 Solve the initial value problems. dy 67. 2 – 7, y(2) = 0 dx 68. 10 - x, y(0) = -1 dx dy 69. - + x, > 0; y(2) = 1 dx 1-² dy 70. == 9x² - 4x + 5, y(-1) = 0 dx dy 71. = 3x-2/3, y(-1) = -5 dx dy 1 72. - y (4) = 0 dx 2Vx ds 73. = 1 + cost, s (0) = 4 dt 74. = cost + sint, s(7) = 1 -π sin 70, 7(0) = 0 1. / 126 + = = ds dt dr 75. d0 Evaluate the integrals in Exercises 13-36. 13. ·/₁ V3-2s ds 14. (2x + 1)³ dx Area In Exercises 37-42, fine x-axis. |37. y = -x − 2x, - 38. y = 3x²-3, -25 39. y=x²-3x² + 2 40. y = x² - 4x. -2 41. y = x¹/³, -1 s 42. y = x¹/3 - x, - 9. (a) Find the termi is (1, -2). (b) Find the initi point is (5, 0. 10. (a) Find the terr is (2, -1). (b) Find the ter point is (-2 11-12 Perform the and w. 11. u = 3i - k, v (a) w - v (c) -v - 2w (e) -8(v + w 12. u = (2,-1,3 (a) u - warrow_forwardProblem 2: Find values of c₁ and c₂ so that y = c₁et + c₂e-t is a solution to the IVP: y=y", y(1) = 0, y' (1) = 1arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Discrete Mathematics and Its Applications ( 8th I...MathISBN:9781259676512Author:Kenneth H RosenPublisher:McGraw-Hill EducationMathematics for Elementary Teachers with Activiti...MathISBN:9780134392790Author:Beckmann, SybillaPublisher:PEARSON
- Thinking Mathematically (7th Edition)MathISBN:9780134683713Author:Robert F. BlitzerPublisher:PEARSONDiscrete Mathematics With ApplicationsMathISBN:9781337694193Author:EPP, Susanna S.Publisher:Cengage Learning,Pathways To Math Literacy (looseleaf)MathISBN:9781259985607Author:David Sobecki Professor, Brian A. MercerPublisher:McGraw-Hill Education
Discrete Mathematics and Its Applications ( 8th I...
Math
ISBN:9781259676512
Author:Kenneth H Rosen
Publisher:McGraw-Hill Education
Mathematics for Elementary Teachers with Activiti...
Math
ISBN:9780134392790
Author:Beckmann, Sybilla
Publisher:PEARSON
Thinking Mathematically (7th Edition)
Math
ISBN:9780134683713
Author:Robert F. Blitzer
Publisher:PEARSON
Discrete Mathematics With Applications
Math
ISBN:9781337694193
Author:EPP, Susanna S.
Publisher:Cengage Learning,
Pathways To Math Literacy (looseleaf)
Math
ISBN:9781259985607
Author:David Sobecki Professor, Brian A. Mercer
Publisher:McGraw-Hill Education
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY
Solution of Differential Equations and Initial Value Problems; Author: Jefril Amboy;https://www.youtube.com/watch?v=Q68sk7XS-dc;License: Standard YouTube License, CC-BY