In Problems 21–24 verify that the
21.
Want to see the full answer?
Check out a sample textbook solutionChapter 8 Solutions
A First Course in Differential Equations with Modeling Applications (MindTap Course List)
- 4. (S.10). Use Gaussian elimination with backward substitution to solve the following linear system: 2.r1 + 12 – 13 = 5, 1 + 12 – 3r3 = -9, -I1 + 12 +2r3 = 9;arrow_forward2. Which of the following is a general solution to the following: x²y" + xy' + (36x² - 1) y (Hint: As discussed in the lecture, use Y, only when J, and J-, are linearly dependent). A. y = c₁J₁(2x) + C₂J_1(2x) 6 B. y = C₁J₁(x) + C₂Y₁(x) 3 3 C. y = c₁₂/₁(6x) + C₂Y₁(6x) 0 D. y = c₁J₁(6x) + c₂] _1(6x) 2arrow_forward15. If A=| B = 0 1 and C = 1 0 , then find the matrix (A v B) 0 carrow_forward
- can you solve (D) (E) (F)arrow_forward[1 1 1] 024. The system of equations | 0 0 1x=| b, | is solvable if |0 0 1 b, (c) b, = b, (d) b, = 0 (e) none (a) h, = b, = 0 (b) b, = b, # 0 025. If A = B+C and B= B' and C' =-C, then %3D %3D (1) C = A– A" »C=÷(4- A') (6) C=;(4+A") (4) C = A+ A" (e) none c=-(4-A') (0) C = (A+ A°) («)C= A+ A°arrow_forward5. Given the system X" - ()* 10 2 (a) Find the general solution. (b) Find the solution that satisfies the initial condition (x(0), y(0)) = (0, –7). Report your solution as one vector.arrow_forward
- Please all solve the issuearrow_forward,solve x′= Ax by determining n linearly independent solutions of the form x(t)=eAtv.arrow_forward1. 2. 3. For which values of a and b is the following system of equations inconsistent. x+2y3z = 4 3x = y + 5z = 2 4x + y + az = b (a) a= 2 and b = 6; (d) a = 1 and b = 3; (d) A = Find the standard matrix for the operator on R² which contracts with factor 1/4, then reflects about the line y = x. 0 (a) A = 1/4 0 (₁/11) ( 0 1/4 1/4 ¹/4) 0 (b) a = 2 and b = 6; (e) None of these. (c) a 2 and b = 6; 0 1/4 - (¹/4) 0 (e) None of these (b) A = (e) None of these (c) A = The linear operator T : R³ → R³ is defined by T(x₁, x2, X3) = (W₁, W2, W3), where w₁ = 2x₁ + 4x2 + x3; W₂ = 9x2+2x3; W3 = 2x1 8x2 - 2x3. Which of the following is correct. (a) T is not one to one. (b) T is one to one but the standard matrix for T-¹ does not exist. (c) T is one to one and its standard matrix for T-¹ is (d) T is one to one and its standard matrix for T-¹ is HOLI 0 1 (88) 0 3 0 1 3 3 WIN - WIN 3 0 1 3 1 -4 3 -3 2 -3 1623arrow_forward
- This is the first part of a four-part problem. Let P = 2e3t – 6e -4e3t + 2e 1(t) = [3et 2(t) = -6e3t + 5e] 15et a. Show that j1(t) is a solution to the system i' = Pỹ by evaluating derivatives and the matrix product 9 = 15 Enter your answers in terms of the variable t. b. Show that ğa(t) is a solution to the system j' = Pj by evaluating derivatives and the matrix product = Enter your answers in terms of the variable t. 8 ]- [8 ]arrow_forward2. In the linear system Ax = b, 27 b = 2 A = 6 (a) Show that x = be a solution of the linear system. 7 (b) Show that b can be expressed as a linear combination of columns of A with scalars 1, -1, and 7. (c) Find x A if it is defined. Whey x is not a solution of ATx = b?arrow_forward(B. Janssen, KTH, 2014) Consider the linear system 0.550x+0.423y = 0.127 0.484x + 0.372y = 0.112 Suppose we are given two possible solutions, u = [_11] and v- -1.91. 1.01 0.9 a. Decide based on the residuals b - Au and b - Av which of the two possible solutions is the 'better' solution. b. Calculate the exact solution x. c. Compute the errors to the exact solution. That is, compute the infinity norms of u-x and v-x. Do the results change your answer to 7a?arrow_forward
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage