Let P denote a matrix whose columns are eigenvectors K1, K2 … Kn corresponding to distinct eigenvalues λ1, λ2,…, λn of an n × n matrix A. Then it can be shown that A = PDP–1, where D is a diagonal matrix defined by
In Problems 19 and 20 verify the foregoing result for the given matrix.
19.
Trending nowThis is a popular solution!
Chapter 8 Solutions
A First Course in Differential Equations with Modeling Applications (MindTap Course List)
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningElementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
- College AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningAlgebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningElements Of Modern AlgebraAlgebraISBN:9781285463230Author:Gilbert, Linda, JimmiePublisher:Cengage Learning,