
Elementary Principles of Chemical Processes, Binder Ready Version
4th Edition
ISBN: 9781118431221
Author: Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 8, Problem 8.11P
Chlorine gas is to be heated front 120°C and 1 atm to 180°C.
- Calculate the heat input (kW) required to heat a stream of the gas flowing at 15.0kmol/min at constant pressure.
- Calculate the heat input (kJ) required to raise the temperature of 15.0 kmol of chlorine in a closed rigid vessel from 120°C and 1 atm to 180°C. (Suggestion: Evaluate AC directly from the result of the first calculation, so that you do not have to perform another integration.) What is the physical significance of the numerical difference between the values calculated in Parts (a) and (b)?
- To accomplish the heating of Part (b), you would actually have to supply an amount of heat to the vessel greater than the amount calculated. Why?
Expert Solution & Answer

Trending nowThis is a popular solution!

Students have asked these similar questions
A constant-volume process involving 2.0 moles of diatomic ideal gas, for which cV = (5/2)R, is
at an initial state of 111 kPa and 277 K and is then heated reversibly to 356 K. Calculate the P2
(kPa), dU (kJ), heat transfer q (kJ mol–1), and w (kJ mol–1).
Problem 1
Marks: 60
Section: 1a): 30 marks, Section 1b):30 marks
A laboratory scale fluidized bed is considered for studying a catalytic ozone decomposition.
a) It is requested to derive model equations under the following assumptions:
■ Operation of the catalytic reactor under steady state conditions,
There is no influence of thermal ozone decomposition reactions.
The fluidized bed includes bubbles and dense phase.
□ The dense phase can be simulated using a CSTR
The fluidized bed bubbles contain catalyst particles and can be simulated as a DSTR (batch).
□ The jets contain particles and can be simulated with a PFR.
The influence of the freeboard has to be considered using a PFR model.
The available catalytic reaction rate model is r (moles/gcat.s)= -k CA
b) Same than on a) under unsteady state conditions, using an absorbable and reactive tracer.
Note: A step-by step derivation of the model equations is required here. A quick answer will not do.
Problem 2 Marks: 40
Section 2a: 30 marks,…
Penicillin process
Penicillium chrysogenum is used to produce penicillin in a 90,000-litre fermenter. The volumetric rate of oxygen uptake by the cells ranges from 0.45 to 0.85 mmol l^−1 min^−1 depending on time during the culture. Power input by stirring is 2.9 W l^−1. Estimate the cooling requirements.
Chapter 8 Solutions
Elementary Principles of Chemical Processes, Binder Ready Version
Ch. 8 - 8.1. The specific internal energy of formaldehyde...Ch. 8 - Prob. 8.2PCh. 8 - Prob. 8.3PCh. 8 - Prob. 8.4PCh. 8 - Prob. 8.5PCh. 8 - 8.6. Table B.7 of Appendix B gives the following...Ch. 8 - Prob. 8.7PCh. 8 - Two formulas for the heat capacity of CO are given...Ch. 8 - 8.9. Table B.2 lists values of the heat capacity...Ch. 8 - Prob. 8.10P
Ch. 8 - Chlorine gas is to be heated front 120°C and 1 atm...Ch. 8 - Prob. 8.12PCh. 8 - Prob. 8.13PCh. 8 - Prob. 8.14PCh. 8 - Use the enthalpy function of APEx to calculate...Ch. 8 - A stream of carbon monoxide flowing at 300 kg/min...Ch. 8 - Prob. 8.17PCh. 8 - Prob. 8.18PCh. 8 - Prob. 8.19PCh. 8 - Prob. 8.20PCh. 8 - Prob. 8.21PCh. 8 - Calculate the heat transfer (kJ) required to cool...Ch. 8 - Twenty liters of liquid n-propyl benzoate...Ch. 8 - Prob. 8.24PCh. 8 - Prob. 8.25PCh. 8 - Prob. 8.26PCh. 8 - A fuel gas containing 95 mole% methane and the...Ch. 8 - Prob. 8.28PCh. 8 - Prob. 8.29PCh. 8 - Ever wonder why espresso costs much more per cup...Ch. 8 - Prob. 8.31PCh. 8 - Saturated steam at 300°C is used to heat a...Ch. 8 - Pure ethane is burned completely with preheated...Ch. 8 - An adiabatic membrane separation unit is used to...Ch. 8 - A gas containing water vapor has a dry-basis...Ch. 8 - Prob. 8.36PCh. 8 - Prob. 8.37PCh. 8 - Prob. 8.38PCh. 8 - In the manufacture of nitric acid, ammonia and...Ch. 8 - A natural gas containing 95 mole% methane and the...Ch. 8 - The heat capacity at constant pressure of a gas is...Ch. 8 - Prob. 8.42PCh. 8 - Prob. 8.43PCh. 8 - Prob. 8.44PCh. 8 - Calculate the heat of vaporization of water...Ch. 8 - Polyvinylpyrrolidone (PVP) is a polymer product...Ch. 8 - Benzene vapor at 480°C is cooled and converted to...Ch. 8 - Prob. 8.48PCh. 8 - Prob. 8.49PCh. 8 - Prob. 8.50PCh. 8 - Prob. 8.51PCh. 8 - Prob. 8.52PCh. 8 - Prob. 8.53PCh. 8 - A stream of pure cyclopentane vapor flowing at a...Ch. 8 - Prob. 8.55PCh. 8 - Prob. 8.57PCh. 8 - A gas stream containing n-hexane in nitrogen with...Ch. 8 - A mixture of n-hexane vapor and air leaves a...Ch. 8 - An equimolar liquid mixture of n-pentane and...Ch. 8 - A liquid stream containing 50.0 mole% benzene and...Ch. 8 - Prob. 8.63PCh. 8 - Prob. 8.64PCh. 8 - Prob. 8.65PCh. 8 - Prob. 8.66PCh. 8 - An aqueous slurry at 30°C containing 20.0 wt%...Ch. 8 - Prob. 8.68PCh. 8 - Prob. 8.69PCh. 8 - A liquid is placed in a wcll-insulatcd container,...Ch. 8 - A small pharmaceutical firm plans to manufacture a...Ch. 8 - Freeze drying is a technique for dehydrating...Ch. 8 - The manufacturers of a new oatmeal product want to...Ch. 8 - Freeze concentration is used to produce a...Ch. 8 - A mixture containing 35.0 mole% n-butane and the...Ch. 8 - A liquid mixture of benzene and toluene containing...Ch. 8 - Prob. 8.79PCh. 8 - An outside-air sample is taken on a day when the...Ch. 8 - Prob. 8.83PCh. 8 - Prob. 8.84PCh. 8 - Prob. 8.85PCh. 8 - Wet solids pass through a continuous dryer. Hot...Ch. 8 - Prob. 8.88PCh. 8 - Prob. 8.93PCh. 8 - The heat of solution of ammonia in water at 1 atm...Ch. 8 - Prob. 8.96PCh. 8 - Sodium hydroxide is dissolved in enough water to...Ch. 8 - A sulfuric acid solution is labeled 8 N (where 1 N...Ch. 8 - You are about to dilute 2.00 mol of 100% sulfuric...Ch. 8 - Prob. 8.100PCh. 8 - A 0.1 mole% caustic soda (NaOH) solution is to be...Ch. 8 - Prob. 8.102PCh. 8 - Ortho-phosphoric acid (H3PO4) is produced as a...Ch. 8 - Prob. 8.104PCh. 8 - Fifty milliliters of 100% H2SO4 at 25°C and 84.2...Ch. 8 - Prob. 8.106PCh. 8 - One g-mole of pure liquid sulfuric acid at...Ch. 8 - Prob. 8.108PCh. 8 - Prob. 8.110PCh. 8 - Prob. 8.111PCh. 8 - Taking as references pure liquid sulfuric acid at...Ch. 8 - Prob. 8.113PCh. 8 - An NH3-H2O mixture containing 60wt% NH3 is brought...Ch. 8 - Prob. 8.115P
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
What does the loop do in the sequential search algorithm? What happens when the value being searched for is fou...
Starting Out with Programming Logic and Design (5th Edition) (What's New in Computer Science)
Show that for circular motion, force = mass * velocity squared/radius.
Thinking Like an Engineer: An Active Learning Approach (4th Edition)
CONCEPT QUESTIONS
15.CQ3 The ball rolls without slipping on the fixed surface as shown. What is the direction ...
Vector Mechanics for Engineers: Statics and Dynamics
Repeat Exercise 13, but use a multibranch if-else statement instead of a switch statement.
Java: An Introduction to Problem Solving and Programming (8th Edition)
1‘21 Same as Problem 1.20, excepi the anicle should be
on safety as related to su rveying-
Elementary Surveying: An Introduction To Geomatics (15th Edition)
What is the purpose of the comment that accompanies a function declaration?
Problem Solving with C++ (10th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Production of bakers’ yeast Bakers’ yeast is produced in a 50,000-litre fermenter under aerobic conditions. The carbon substrate is sucrose; ammonia is provided as the nitrogen source. The average biomass composition is CH_1.83O_0.55N_0.17 with 5% ash. Under conditions supporting efficient growth, biomass is the only major product and the biomass yield from sucrose is 0.5 g g^−1. If the specific growth rate is 0.45 h^−1, estimate the rate of heat removal required to maintain constant temperature in the fermenter when the yeast concentration is 10 g l^−1.arrow_forwardSensible energy change Calculate the enthalpy change associated with the following processes:(a) m-Cresol is heated from 25°C to 100°C(b) Ethylene glycol is cooled from 20°C to 10°C(c) Succinic acid is heated from 15°C to 120°C(d) Air is cooled from 150°C to 65°Carrow_forward▼ Enzyme conversion An immobilised enzyme process is used in an ice-cream factory to hydrolyse lactose (C12H22O11) to glucose (C6H12O6) and galactose (C6H1206): C12H22O11 + H2O →→ C6H12O + C6H12O6 Gel beads containing ß-galactosidase are packed into a column reactor; 2500 kg of lactose enters the reactor per day as a 10% solution in water at 25°C. The reactor operates at steady state and 32°C; all of the lactose is converted. Because the heat of reaction for enzyme conversions is not as great as for cell culture, sensible heat changes and heats of mixing cannot be ignored. Lactose Water Ah (kJ gmol¹) C, (cal g¹ ºC-¹) Ahm (kcal gmol¹) 3.7 -5652.5 0.30 1.0 Glucose -2805.0 0.30 5.6 Galactose -2805.7 0.30 5.6 (a) What is the standard heat of reaction for this enzyme conversion? (b) Estimate the heating or cooling requirements for this process. State explicitly whether heating or cooling is needed.arrow_forward
- Bacterial production of alginate Azotobacter vinelandii is investigated for production of alginate from sucrose. In a continuous fermenter at 28°C with ammonia as nitrogen source, the yield of alginate was found to be 4 g g^−1 oxygen consumed. It is planned to produce alginate at a rate of 5 kg h^−1. Since the viscosity of alginate in aqueous solution is considerable, energy input due to mixing the broth cannot be neglected. The fermenter is equipped with a flat-blade disc turbine; at a satisfactory mixing speed and air flow rate, the power requirements are estimated at 1.5 kW. Calculate the cooling requirements.arrow_forwardPreheating nutrient medium Steam is used to heat nutrient medium in a continuous-flow process. Saturated steam at 150°C enters a coil on the outside of the heating vessel and is completely condensed. Liquid medium enters the vessel at 15°C and leaves at 44°C. Heat losses from the jacket to the surroundings are estimated as 0.22 kW. If the flow rate of medium is 3250 kg h^−1 and its heat capacity is 0.9 cal g^−1 °C^−1, how much steam is required?arrow_forwardQ3] Determine the optimal operating conditions (XA, t, and CR) in a mixed flow reactor to maximize the concentration of R (CR) in the effluent, where an aqueous feed A with an initial concentration of CA0-40 mol/m³ enters the reactor, undergoes decomposition, and exits as a mixture containing A, R, and S. K₁ AR, FR = k₁C, k₁ = 0.4 m³/(mol min) SA AS, rs = k₂CA, k₂ = 2(min), CA0 = 40 mol/m³arrow_forward
- Consider the parallel decomposition of A of different orders with FR = 1, rs = 2CA and IT = C. Determine the maximum concentration of desired product obtainable in mixed flow reactor and plug flow reactor. (1) R is desired product and CA0 = 2. (2) S is desired product and CA0 = 4. R S Tarrow_forward1. Copper is known to be toxic to fish, and in particular, the free ion Cu²+ species typically shows greatest toxicity. a. Calculate the speciation of Cu(II) for freshwater at a pH value of 8.3 as the hardness increases from 20 (soft) to 100 (moderately hard) to 200 (very hard) mg/L as CaCO3. Assume that the total divalent Cu(II) concentration is 10 µg/L. b. Based on your findings in part (a), do you think it is appropriate to set a single regulatory limit or should it depend on variables such as pH and hardness? Explain your answer.arrow_forwardMaterial Sciencearrow_forward
- Electronic devices found in integrated circuits are composed of very high purity silicon to which has been added small and very controlled concentrations of elements found in Groups IIIA and VA of the periodic table. For Si that has had added 9.1 × 1021 atoms per cubic meter of antimony compute (a) the weight percent and (b) the atom percent of Sb present. (Hint: use Equation 100 C₁ = 1 + NAP2 N1A₁ P2 P1 (a) 0.00636 %wt (b) i 0.0182 %atarrow_forwardUse the binary diagram, 45 line above and material balance to solve the One thousand kg/h of a (50-50 wt%) acetone-in-water solution is to be extracted at 25C in a continuous, countercurrent system with pure 1,1,2-trichloroethane to obtain a raffinate containing 10 wt% acetone. Using the following equilibrium data, determine with an equilateral-triangle diagram: a the minimum flow rate of solvent; b. the number of stages required for a solvent rate equal to 1.5 times minimum, and composition of each streamleaving each stage. Repeat the calculation of (a) and (b) if the solvent used has purity 93wt% (4wr% acetone, 3wt% water impurities) acetone 0.6 water 0.13 1,1,2-trichloroethane 0.27 Raffinate. Weight Fraction Acetone Extract. Weight Fraction Acetone 0.5 0.04 0.46 0.44 0.56 0.4 0.03 0.57 0.29 0.40 0.3 0.02 0.681 0.12 0.18 0.2 0.015 0.785 0.0 0.0 0.1 0.01 0.89 0.55 0.35 0.1 0.5 0.43 0.07 0.4 0.57 0.03 0.3 0.68 0.02 0.2 0.79 0.01 0.1 0.895 0.005arrow_forwardMaterial Sciencearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introduction to Chemical Engineering Thermodynami...Chemical EngineeringISBN:9781259696527Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark SwihartPublisher:McGraw-Hill EducationElementary Principles of Chemical Processes, Bind...Chemical EngineeringISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEYElements of Chemical Reaction Engineering (5th Ed...Chemical EngineeringISBN:9780133887518Author:H. Scott FoglerPublisher:Prentice Hall
- Industrial Plastics: Theory and ApplicationsChemical EngineeringISBN:9781285061238Author:Lokensgard, ErikPublisher:Delmar Cengage LearningUnit Operations of Chemical EngineeringChemical EngineeringISBN:9780072848236Author:Warren McCabe, Julian C. Smith, Peter HarriottPublisher:McGraw-Hill Companies, The

Introduction to Chemical Engineering Thermodynami...
Chemical Engineering
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:McGraw-Hill Education

Elementary Principles of Chemical Processes, Bind...
Chemical Engineering
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY

Elements of Chemical Reaction Engineering (5th Ed...
Chemical Engineering
ISBN:9780133887518
Author:H. Scott Fogler
Publisher:Prentice Hall


Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:9781285061238
Author:Lokensgard, Erik
Publisher:Delmar Cengage Learning

Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:9780072848236
Author:Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:McGraw-Hill Companies, The
Introduction to Nonreactive Processes Without Phase Change; Author: NPTEL-NOC IITM;https://www.youtube.com/watch?v=1Okp7895M6I;License: Standard YouTube License, CC-BY