
Elementary Principles of Chemical Processes, Binder Ready Version
4th Edition
ISBN: 9781118431221
Author: Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 8, Problem 8.105P
Fifty milliliters of 100% H2SO4 at 25°C and 84.2 mL of liquid water at 15°C are mixed. The heat capacity of the product solution is 2.43 J/(g·°C).
- Estimate the maximum temperature attainable by the product solution and state the conditions under which this temperature would be attained, using heat of mixing data from Table B.11.
- Give several reasons why the temperature calculated in Part (a) could not be attained in practice.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
5. Look at Figure 7-14. Determine the voltage developed between the steel nozzle and the
grounded vessel, and how much energy is stored in the nozzle. Explain the potential
hazards for cases A and B from the following table:
Case A
Case B
Hose length (ft)
75
75
Hose diameter (in)
2.0
2.0
Flow rate (gpm)
30
30
Liquid conductivity (mho/cm)
2x10-8
1x10-14
Dielectric constant
2.3
25
Density (g/cm³)
0.8
0.9
6. In Problem 5, case B, what would be the most effective way to reduce the potential
hazards in this situation?
2. You have decided to use a vacuum purging technique to purge oxygen from a reactor
vessel to reduce the concentration to 2.0% (mol). The reactor is 18 ft diameter and 40 ft
tall. The temperature is 80°F. Assume that the vacuum purge goes from atmospheric
pressure to 10.0 psia. How many purge cycles are required and how many total moles of
nitrogen must be used? Assume the purge is done with pure nitrogen.
An 8-foot ion exchange bed needs to be backwashed with water to remove impurities. The particles have a density of 1.24 g/cm³ and an average size of 1.1 mm.
Calculate:
a. The minimum fluidization velocity using water at 30°C?
b. The velocity required to expand the bed by 30%?
Assumptions: The ion exchange bed particles are spherical (sphericity = 1.1), and the minimum fluidization porosity (ɛM) is 0.3.
Notes:
At 30°C, the viscosity (μ) of water is 0.797 cP, and the density (ρ) is 0.995 g/cm³.
Chapter 8 Solutions
Elementary Principles of Chemical Processes, Binder Ready Version
Ch. 8 - 8.1. The specific internal energy of formaldehyde...Ch. 8 - Prob. 8.2PCh. 8 - Prob. 8.3PCh. 8 - Prob. 8.4PCh. 8 - Prob. 8.5PCh. 8 - 8.6. Table B.7 of Appendix B gives the following...Ch. 8 - Prob. 8.7PCh. 8 - Two formulas for the heat capacity of CO are given...Ch. 8 - 8.9. Table B.2 lists values of the heat capacity...Ch. 8 - Prob. 8.10P
Ch. 8 - Chlorine gas is to be heated front 120°C and 1 atm...Ch. 8 - Prob. 8.12PCh. 8 - Prob. 8.13PCh. 8 - Prob. 8.14PCh. 8 - Use the enthalpy function of APEx to calculate...Ch. 8 - A stream of carbon monoxide flowing at 300 kg/min...Ch. 8 - Prob. 8.17PCh. 8 - Prob. 8.18PCh. 8 - Prob. 8.19PCh. 8 - Prob. 8.20PCh. 8 - Prob. 8.21PCh. 8 - Calculate the heat transfer (kJ) required to cool...Ch. 8 - Twenty liters of liquid n-propyl benzoate...Ch. 8 - Prob. 8.24PCh. 8 - Prob. 8.25PCh. 8 - Prob. 8.26PCh. 8 - A fuel gas containing 95 mole% methane and the...Ch. 8 - Prob. 8.28PCh. 8 - Prob. 8.29PCh. 8 - Ever wonder why espresso costs much more per cup...Ch. 8 - Prob. 8.31PCh. 8 - Saturated steam at 300°C is used to heat a...Ch. 8 - Pure ethane is burned completely with preheated...Ch. 8 - An adiabatic membrane separation unit is used to...Ch. 8 - A gas containing water vapor has a dry-basis...Ch. 8 - Prob. 8.36PCh. 8 - Prob. 8.37PCh. 8 - Prob. 8.38PCh. 8 - In the manufacture of nitric acid, ammonia and...Ch. 8 - A natural gas containing 95 mole% methane and the...Ch. 8 - The heat capacity at constant pressure of a gas is...Ch. 8 - Prob. 8.42PCh. 8 - Prob. 8.43PCh. 8 - Prob. 8.44PCh. 8 - Calculate the heat of vaporization of water...Ch. 8 - Polyvinylpyrrolidone (PVP) is a polymer product...Ch. 8 - Benzene vapor at 480°C is cooled and converted to...Ch. 8 - Prob. 8.48PCh. 8 - Prob. 8.49PCh. 8 - Prob. 8.50PCh. 8 - Prob. 8.51PCh. 8 - Prob. 8.52PCh. 8 - Prob. 8.53PCh. 8 - A stream of pure cyclopentane vapor flowing at a...Ch. 8 - Prob. 8.55PCh. 8 - Prob. 8.57PCh. 8 - A gas stream containing n-hexane in nitrogen with...Ch. 8 - A mixture of n-hexane vapor and air leaves a...Ch. 8 - An equimolar liquid mixture of n-pentane and...Ch. 8 - A liquid stream containing 50.0 mole% benzene and...Ch. 8 - Prob. 8.63PCh. 8 - Prob. 8.64PCh. 8 - Prob. 8.65PCh. 8 - Prob. 8.66PCh. 8 - An aqueous slurry at 30°C containing 20.0 wt%...Ch. 8 - Prob. 8.68PCh. 8 - Prob. 8.69PCh. 8 - A liquid is placed in a wcll-insulatcd container,...Ch. 8 - A small pharmaceutical firm plans to manufacture a...Ch. 8 - Freeze drying is a technique for dehydrating...Ch. 8 - The manufacturers of a new oatmeal product want to...Ch. 8 - Freeze concentration is used to produce a...Ch. 8 - A mixture containing 35.0 mole% n-butane and the...Ch. 8 - A liquid mixture of benzene and toluene containing...Ch. 8 - Prob. 8.79PCh. 8 - An outside-air sample is taken on a day when the...Ch. 8 - Prob. 8.83PCh. 8 - Prob. 8.84PCh. 8 - Prob. 8.85PCh. 8 - Wet solids pass through a continuous dryer. Hot...Ch. 8 - Prob. 8.88PCh. 8 - Prob. 8.93PCh. 8 - The heat of solution of ammonia in water at 1 atm...Ch. 8 - Prob. 8.96PCh. 8 - Sodium hydroxide is dissolved in enough water to...Ch. 8 - A sulfuric acid solution is labeled 8 N (where 1 N...Ch. 8 - You are about to dilute 2.00 mol of 100% sulfuric...Ch. 8 - Prob. 8.100PCh. 8 - A 0.1 mole% caustic soda (NaOH) solution is to be...Ch. 8 - Prob. 8.102PCh. 8 - Ortho-phosphoric acid (H3PO4) is produced as a...Ch. 8 - Prob. 8.104PCh. 8 - Fifty milliliters of 100% H2SO4 at 25°C and 84.2...Ch. 8 - Prob. 8.106PCh. 8 - One g-mole of pure liquid sulfuric acid at...Ch. 8 - Prob. 8.108PCh. 8 - Prob. 8.110PCh. 8 - Prob. 8.111PCh. 8 - Taking as references pure liquid sulfuric acid at...Ch. 8 - Prob. 8.113PCh. 8 - An NH3-H2O mixture containing 60wt% NH3 is brought...Ch. 8 - Prob. 8.115P
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
40. Why might a welded structure warp if the structure is machined after welding?
Degarmo's Materials And Processes In Manufacturing
Tossing Coins for a Dollar For this assignment you will create a game program using the Coin class from Program...
Starting Out with Java: From Control Structures through Objects (7th Edition) (What's New in Computer Science)
Math Quiz Write a program that gives simple math quizzes. The program should display two random numbers that ar...
Starting Out with Python (4th Edition)
The following statements use conditional expressions. Rewrite each with an if /else statement. A) j = k 90 ? 5...
Starting Out with C++ from Control Structures to Objects (9th Edition)
Define the three types of recursive binary relationships, and give an example of each, other than the ones show...
Database Concepts (8th Edition)
Write an application that tests whether the examples of the Math class method calls shown in Fig. 6.2 actually ...
Java How to Program, Early Objects (11th Edition) (Deitel: How to Program)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemical-engineering and related others by exploring similar questions and additional content below.Similar questions
- fluidized bed reactor uses a solid catalyst with a particle diameter of 0.25 mm, a bulk density of 1.50 g/mL, and a sphericity of 0.90. Under packed bed conditions, the porosity is 0.35, and the bed height is 2 m. The gas enters from the bottom of the reactor at a temperature of 600°C, with a viscosity of 0.025 cP and a density of 0.22 lb/ft³. At minimum fluidization, the porosity reaches 0.45. Calculate: a. The minimum superficial velocity (VM) of the gas entering the fluidized column. b. The bed height if V = 2 VM c. The pressure drop under conditions where V =2.5 VMarrow_forwardA fluidized bed reactor uses a solid catalyst with a particle diameter of 0.25 mm, a bulk density of 1.50 g/mL, and a sphericity of 0.90. Under packed bed conditions, the porosity is 0.35, and the bed height is 2 m. The gas enters from the bottom of the reactor at a temperature of 600°C, with a viscosity of 0.025 cP and a density of 0.22 lb/ft³. At minimum fluidization, the porosity reaches 0.45. Calculate: a. The minimum superficial velocity (VM) of the gas entering the fluidized column. b. The bed height if V = 2 VM c. The pressure drop under conditions where V =2.5 VMarrow_forwardPlease answer 5.8arrow_forward
- Please answer 5.6arrow_forwardYou have been tasked with figuring out how to suppress changes in the supply flow rate to a reactorfor which it is desired to keep the inlet flow rate as constant as possible. You are considering designing a surgetank to place upstream of the reactor and then installing a pump on the line between that surge tank and thereactor. A surge tank is one with a weir inside it, which is a partial wall separating the tank volume into twoconnected sections allowing for flow under the weir between the two sections. The variable inlet mass flow,wi(t) flows into volume 1 and then flows due to hydrostatic pressure at a mass flow rate of w1(t) into volume 2.The weir causes a flow resistance, R1, such that w1 = (h1-h2)/R1. Fluid is then pumped out of volume 2 at thedesired constant mass flow rate of w2. Make a summary table of the three transfer functions written in standard form and their keyparameters (gains, time constants) in terms of the physical system parameters (A1, A2, , A, R…). Checkif/how…arrow_forwardThe vapor pressure of Toluene at 50°C in Pa? Find it on perry's chemical engineering handbook 9th or 8th editionarrow_forward
- Hydrogen (H₂) is considered a clean energy carrier. For its use as a fuel, hydrogen is stored at 5 bar insidea cylindrical tank made of nickel (Ni) with 7 cm inner diameter, 1.2 mm thickness, and the length of L. Thetank is maintained at 358 K. Unfortunately, a small amount of hydrogen diffuses out of the tank, slowlydepleting its contents. You may assume that the hydrogen pressure outside the tank is essentially zero andconvective resistance inside and outside of the cylinder is negligible.• Solubility of H2 in Ni at 358 K = 0.00901 kmol/m3·bar• DH2, Ni at 358 K = 1.2 x 10-12 m2/sCalculate the maximum length of the nickel tank wall to ensure that the hydrogen loss does not exceed0.01 kg per year.arrow_forwardYou just took out a cold soda can (at 1 oC) from the refrigerator. Calculate thetemperature of the soda can after the can is placed in a room (at 31 oC, h = 100 W/m2-K) for 60 mins (we all know that soda tastes much better when it is cold!). • k = 0.617 W/m-K, density = 996 kg/m3, Cp = 4178 J/Kg-K• Height = 10 cm & Diameter = 5 cmCalculate the temperature of the soda can surface at the middle point of the heightusing 2-D analysis.arrow_forwardA thick nickel wall is exposed to pure 5 bar H2(g) at 85 oC on one side of its surface (13 pts).(a) Assuming thermodynamic gas-solid equilibrium, calculate the H2 concentration at the surface ofthe nickel wall. (b) Assuming that the concentration of H2 at the surface is constant, determine the concentration ofH2 at the penetration depth in percentage of its concentration at the wall surfacearrow_forward
- Can you provide me the answer of these pleasearrow_forwardA constant-volume process involving 2.0 moles of diatomic ideal gas, for which cV = (5/2)R, is at an initial state of 111 kPa and 277 K and is then heated reversibly to 356 K. Calculate the P2 (kPa), dU (kJ), heat transfer q (kJ mol–1), and w (kJ mol–1).arrow_forwardProblem 1 Marks: 60 Section: 1a): 30 marks, Section 1b):30 marks A laboratory scale fluidized bed is considered for studying a catalytic ozone decomposition. a) It is requested to derive model equations under the following assumptions: ■ Operation of the catalytic reactor under steady state conditions, There is no influence of thermal ozone decomposition reactions. The fluidized bed includes bubbles and dense phase. □ The dense phase can be simulated using a CSTR The fluidized bed bubbles contain catalyst particles and can be simulated as a DSTR (batch). □ The jets contain particles and can be simulated with a PFR. The influence of the freeboard has to be considered using a PFR model. The available catalytic reaction rate model is r (moles/gcat.s)= -k CA b) Same than on a) under unsteady state conditions, using an absorbable and reactive tracer. Note: A step-by step derivation of the model equations is required here. A quick answer will not do. Problem 2 Marks: 40 Section 2a: 30 marks,…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introduction to Chemical Engineering Thermodynami...Chemical EngineeringISBN:9781259696527Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark SwihartPublisher:McGraw-Hill EducationElementary Principles of Chemical Processes, Bind...Chemical EngineeringISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEYElements of Chemical Reaction Engineering (5th Ed...Chemical EngineeringISBN:9780133887518Author:H. Scott FoglerPublisher:Prentice Hall
- Industrial Plastics: Theory and ApplicationsChemical EngineeringISBN:9781285061238Author:Lokensgard, ErikPublisher:Delmar Cengage LearningUnit Operations of Chemical EngineeringChemical EngineeringISBN:9780072848236Author:Warren McCabe, Julian C. Smith, Peter HarriottPublisher:McGraw-Hill Companies, The

Introduction to Chemical Engineering Thermodynami...
Chemical Engineering
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:McGraw-Hill Education

Elementary Principles of Chemical Processes, Bind...
Chemical Engineering
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY

Elements of Chemical Reaction Engineering (5th Ed...
Chemical Engineering
ISBN:9780133887518
Author:H. Scott Fogler
Publisher:Prentice Hall


Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:9781285061238
Author:Lokensgard, Erik
Publisher:Delmar Cengage Learning

Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:9780072848236
Author:Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:McGraw-Hill Companies, The
Mod-01 Lec-23 Degrees of freedom analysis; Author: nptelhrd;https://www.youtube.com/watch?v=c4h85JjrkzQ;License: Standard YouTube License, CC-BY
Introduction to Degrees of Freedom; Author: LearnChemE;https://www.youtube.com/watch?v=tW1ft4y5fQY;License: Standard Youtube License