Fox And Mcdonald's Introduction To Fluid Mechanics
9th Edition
ISBN: 9781118921876
Author: Pritchard, Philip J.; Leylegian, John C.; Bhaskaran, Rajesh
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 8, Problem 80P
Water flows from a larger pipe, diameter D1 = 100 mm, into a smaller one, diameter D2 = 50 mm, by way of a reentrant device. Find the head loss between points ① and ②.
P8.80
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Water flows through a pipe
having an inner radius of 20mm
at the rate of 42 kg/hr at 20^0C.
Viscosity of water is 0.001 kg/
ms. Find reynolds number of the
flow?
5. Water flows in a 30 cm diameter cast iron pipe of relative roughness 0.0008. If the water flow rate is
200 litre/s, find the head loss per 100 m of pipe. Take dynamic viscosity of water as 1.49 x 103
Ns/m2. Density of water is 1000 kg/m³.
Problem 1
Problem 1: Water at 20°C flows at a rate of 10 m³/h from Point A to Point B (Fig. 1) through a pipe of 4 cm in
diameter with a roughness of I mm. Pipe length between Points A and B is 36 m. At Point B, the gauge pressure
is 200 kPa.. Determine:
a) Head loss between Points A and B (
b) Pressure at Point A
1 B
12 m
law in round nine
Chapter 8 Solutions
Fox And Mcdonald's Introduction To Fluid Mechanics
Ch. 8 - Consider incompressible flow in a circular...Ch. 8 - What is the maximum flow rate of air that may...Ch. 8 - For flow in circular tubes, transition to...Ch. 8 - An incompressible fluid flows between two infinite...Ch. 8 - Oil is confined in a 4-in.-diameter cylinder by a...Ch. 8 - Viscous oil flows steadily between parallel...Ch. 8 - Calculate for the flow in this two-dimensional...Ch. 8 - The velocity profile in a two-dimensional open...Ch. 8 - A large mass is supported by a piston of diameter...Ch. 8 - A hydraulic jack supports a load of 9000 kg. The...
Ch. 8 - The basic component of a pressure gage tester...Ch. 8 - When a horizontal laminar flow occurs between two...Ch. 8 - In a laminar flow of water of 0:007 m3/s between...Ch. 8 - Consider the simple power-law model for a...Ch. 8 - A sealed journal bearing is formed from concentric...Ch. 8 - Using the profile of Problem 8.15, show that the...Ch. 8 - In a laminar flow between parallel plates spaced...Ch. 8 - A fluid of specific gravity 0.90 flows at a...Ch. 8 - Two immiscible fluids are contained between...Ch. 8 - The record-read head for a computer disk-drive...Ch. 8 - Consider steady, incompressible, and fully...Ch. 8 - In a flow of air between parallel plates spaced...Ch. 8 - Consider fully developed flow between parallel...Ch. 8 - Free-surface waves begin to form on a laminar...Ch. 8 - A viscous-shear pump is made from a stationary...Ch. 8 - The efficiency of the viscous-shear pump of Fig....Ch. 8 - An inventor proposes to make a viscous timer by...Ch. 8 - A continuous belt, passing upward through a...Ch. 8 - A wet paint film of uniform thickness, , is...Ch. 8 - Consider first water and then SAE 10W lubricating...Ch. 8 - Using Eq. A.3 in Appendix A for the viscosity of...Ch. 8 - Consider fully developed laminar flow in the...Ch. 8 - Carbon dioxide flows in a 50-mm-diameter pipe at a...Ch. 8 - Consider fully developed laminar flow in a...Ch. 8 - What is the largest diameter of pipeline that may...Ch. 8 - Consider fully developed laminar flow in the...Ch. 8 - Consider fully developed pressure-driven flow in a...Ch. 8 - In the laminar flow of an oil of viscosity 1 Pa_s,...Ch. 8 - In a laminar flow of 0.007 m3/s in a...Ch. 8 - Consider blood flow in an artery. Blood is...Ch. 8 - The classic Poiseuille flow (Eq. 8.12), is for...Ch. 8 - For pressure-driven, steady, fully developed...Ch. 8 - In a laminar flow in a 12-in.-diameter pipe the...Ch. 8 - A fluid of specific gravity 0.90 flows at a...Ch. 8 - In a food industry plant, two immiscible fluids...Ch. 8 - A horizontal pipe carries fluid in fully developed...Ch. 8 - Kerosene is pumped through a smooth tube with...Ch. 8 - In a flow of water in a 0.3-m-diameter pipe, the...Ch. 8 - A liquid drug, with the viscosity and density of...Ch. 8 - Laufer [5] measured the following data for mean...Ch. 8 - Equation 8.23 gives the power-law velocity profile...Ch. 8 - Consider fully developed laminar flow of water...Ch. 8 - Consider fully developed laminar flow in a...Ch. 8 - If the turbulent velocity profile in a pipe 0.6 m...Ch. 8 - Water flows in a horizontal constant-area pipe;...Ch. 8 - For a given volume flow rate and piping system,...Ch. 8 - Consider the pipe flow from the water tower of...Ch. 8 - At the inlet to a constant-diameter section of the...Ch. 8 - When oil (kinematic viscosity 1 104 m2/s,...Ch. 8 - When fluid of specific weight 50 lb/ft3 flows in a...Ch. 8 - If the head lost in 30-m-diameter of...Ch. 8 - Water flows at 10 L/min through a horizontal...Ch. 8 - Laufer [5] measured the following data for mean...Ch. 8 - Water is pumped at the rate of 0.075 m3/s from a...Ch. 8 - Just downstream from the nozzle tip the velocity...Ch. 8 - A horizontal nozzle having a cylindrical tip of 75...Ch. 8 - When 0.3 m3/s of water flows through a...Ch. 8 - Water flows through a 2-in.-diameter tube that...Ch. 8 - A 50-mm-diameter nozzle terminates a vertical...Ch. 8 - A 12-in.-diameter pipe leaves a reservoir of...Ch. 8 - A water pipe gradually changes from 6-in.-diameter...Ch. 8 - Air at standard conditions flows through a sudden...Ch. 8 - Water flows from a larger pipe, diameter D1 = 100...Ch. 8 - Flow through a sudden contraction is shown. The...Ch. 8 - A flow rate of 1.01/min of oil of specific gravity...Ch. 8 - Water flows in a smooth pipeline at a Reynolds...Ch. 8 - Air flows out of a clean room test chamber through...Ch. 8 - A conical diffuser is used to expand a pipe flow...Ch. 8 - By applying the basic equations to a control...Ch. 8 - Water at 45C enters a shower head through a...Ch. 8 - Water discharges to atmosphere from a large...Ch. 8 - A laboratory experiment is set up to measure...Ch. 8 - Oil with kinematic viscosity = 7.5 104 ft2/s...Ch. 8 - Water from a pump flows through a 9-in.-diameter...Ch. 8 - A 5-cm-diameter potable water line is to be run...Ch. 8 - A system for testing variable-output pumps...Ch. 8 - Two reservoirs are connected by three clean...Ch. 8 - Water, at volume flow rate Q = 0.75 ft3/s, is...Ch. 8 - When you drink a beverage with a straw, you need...Ch. 8 - What flow rate (gpm) will be produced in a...Ch. 8 - Gasoline flows in a long, underground pipeline at...Ch. 8 - An 18-in.-diameter new riveted steel pipeline 1000...Ch. 8 - What diameter of smooth masonry pipe is needed to...Ch. 8 - Water flows steadily in a 125-mm-diameter...Ch. 8 - Two galvanized iron pipes of diameter D are...Ch. 8 - A mining engineer plans to do hydraulic mining...Ch. 8 - The flow of water through a 150-mm-diameter...Ch. 8 - The fluid flowing has specific gravity 0.90; V75=6...Ch. 8 - Water is flowing. Calculate the direction and...Ch. 8 - Investigate the effect of tube roughness on flow...Ch. 8 - Investigate the effect of tube length on water...Ch. 8 - For the pipe flow into a reservoir of Example 8.5...Ch. 8 - Calculate the magnitude and direction of the...Ch. 8 - Experimental determination of local losses and...Ch. 8 - Water is flowing. Calculate the gage reading when...Ch. 8 - The siphon shown is fabricated from 50-mm-i.d....Ch. 8 - A large open water tank has a horizontal cast iron...Ch. 8 - A tank containing 30 m3 of kerosene is to be...Ch. 8 - A 90 screwed elbow is installed in a...Ch. 8 - Calculate the total tension in the bolts. Neglect...Ch. 8 - A horizontal 50-mm-diameter PVC pipeline leaves...Ch. 8 - You are watering your lawn with an old hose....Ch. 8 - Your boss claims that for pipe flow the flow rate,...Ch. 8 - A hydraulic press is powered by a remote...Ch. 8 - One-quarter of a cubic meter per second of liquid...Ch. 8 - Calculate the flow rate from this water tank if...Ch. 8 - A 6-ft-diameter pipeline 4 miles long between two...Ch. 8 - A new industrial plant requires a water flow rate...Ch. 8 - What diameter water pipe is required to handle...Ch. 8 - A pipe friction experiment for air consists of a...Ch. 8 - Oil has been flowing from a large tank on a hill...Ch. 8 - The pressure rise across a water pump is 35 psi...Ch. 8 - Cooling water is pumped from a reservoir to rock...Ch. 8 - You are asked to size a pump for installation in...Ch. 8 - Heavy crude oil (SG = 0.925 and = 1.0 104 m2/s)...Ch. 8 - Petroleum products are transported over long...Ch. 8 - The head versus capacity curve for a certain fan...Ch. 8 - A swimming pool has a partial-flow filtration...Ch. 8 - Water at 65C flows through a 75-mm-diameter...Ch. 8 - A 12 in. 6 in. Venturi meter is installed in a...Ch. 8 - A 1-in.-diameter nozzle is attached to a...Ch. 8 - A sharp-edged orifice with conventional pressure...Ch. 8 - A venturi meter with a 3-in.-diameter throat is...Ch. 8 - Air flows through a venturi meter with a...Ch. 8 - Water at 10C flows steadily through a venturi. The...Ch. 8 - Drinking straws are to be used to improve the air...Ch. 8 - In some western states, water for mining and...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
1‘21 Same as Problem 1.20, excepi the anicle should be
on safety as related to su rveying-
Elementary Surveying: An Introduction To Geomatics (15th Edition)
Assume the following variables are defined: int age; double pay; char section; Write a single cin statement tha...
Starting Out with C++ from Control Structures to Objects (9th Edition)
17–1C A high-speed aircraft is cruising in still air. How does the temperature of air at the nose of the aircra...
Thermodynamics: An Engineering Approach
In the following exercises, write a program to carry out the task. The program should use variables for each of...
Introduction To Programming Using Visual Basic (11th Edition)
Modify the Product_T table by adding an attribute QtyOnHand that can be used to track the finished goods invent...
Modern Database Management
Explain the meaning of the term object persistence.
Database Concepts (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- pls show complete solutionarrow_forward(b) A pipeline carrying 0.257 m³/s water is reduced suddenly from 400 mm to 250 mm diameter (Take Cc =0.67). Find the head loss due to the sudden contraction. A horizontal venture meter with the diameter 200 mm at the inlet and 100 mm at the throat. A mercury differential manometer linked at venture meter shown (c) at different level reading is X meter. Given the discharge coefficient 0.9, calculate differential (X) if the discharge of water is 0.07 m³/s.arrow_forwardA water with viscosity 11.4x10-3 poise is flowing through a pipe of diameter 480 mm at the rate of 375 litres per sec. Find the Reynold's Number & the head lost due to friction in the pipe of length 0.5 km.arrow_forward
- 1. in a section of horizontal piper with a diameter of 3cm the pressure is 5.21 kpa and water is flowing with a speed of 1.50m/s. the pipe narrows to 2.50cm. what is the pressure in the narrower region if water behaves like an ideal fluid of sensity 1000kg/m3 2. tensile stress a. the ratio of elasic modules to strain b. the applied force per crosssectional area c. the ratio of change in length to the orig length d. the strain per unit legth e. the same as forcearrow_forward2. Water flows in a pipe at 0.015 m³/s. The pipe is 50 mm bore diameter. The pressure drop is 13 420 Pa per metre length. The density is 1000 kg/m³ and the dynamic viscosity is 0.001 N s/m². Determine i. the wall shear stress (167.75 Pa) ii. the dynamic pressure (29180 Pa). iii. the friction coefficient (0.00575) iv. the mean surface roughness (0.0875 mm)arrow_forward1. Water flows at a rate of 0.020 m3/s from reservoir A to reservoir B through three %3D concrete pipes connected in series, as shown. Find the difference in water surface elevation in the reservoirs. Use f = 0.026 for all pipes. Neglect minor losses. A Water 1000 m, 160-mm diameter 1600 m, 200-mm diameter 850 m, 180-mm diameter Waterarrow_forward
- A portion of a horizontal pipeline consists of a 150mm diameter pipe joined by sudden enlargement to a 225mm diameter pipe.water is flowing through it at the rate of 0•05m^3/s.calculate 1.loss head due to sudden expansion 2.pressure difference in the two pipes 3.change in pressure if the change of section is gradual without any loss.arrow_forwardQ20/ The pipe flow shown in the Fig. is driven by pressurized air in the tank. What gage pressure P₁ is needed to provide a flow rate of 50 m³/hr. Neglect minor losses. 3600 Smooth pipe: d = 50mm Pl I 10 m 40m 20m 80 m Open jetarrow_forwardRate the flow inside a pipe with Re = 1.8x10^4 and ε/D = 0.027. A: Turbulent totally rough B. Hydraulically smooth turbulence C. Laminar, with f=64/Re D.Transient roughness turbulencearrow_forward
- Question 2 Kentance = Kexit = 1 Kglobevalve = 10 Kelbow = 0.9 Calculate the flow rate, Q and the velocity, v, knowing that total head loss, H̟ = 25m. 2 m f= 0.02 D= 20 mm 2 m 5 marrow_forwardOil of specific gravity 0.70 and dynamic viscosity of 0.05Pa-s flows at a rate of 100lit/sec through a 80m of 150mm diameter pipe. If the head lost is 4m, determine the reynolds number, maximum velocity in m/s, maximum shear stress in Pa , Velocity 40mm from centerline of pipe in m/s.arrow_forwardQ2\ A tank of water empties by gravity through a horizontal pipe into another tank. There is a sudden enlargement in the pipe as shown. At a certain time, the difference in levels is 3 m. Each pipe is 2 m long and has a friction coefficient 0.005. The inlet loss constant is K = 0.3. Calculate the volume flow rate at this point.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Physics 33 - Fluid Statics (1 of 10) Pressure in a Fluid; Author: Michel van Biezen;https://www.youtube.com/watch?v=mzjlAla3H1Q;License: Standard YouTube License, CC-BY