Fox And Mcdonald's Introduction To Fluid Mechanics
9th Edition
ISBN: 9781118921876
Author: Pritchard, Philip J.; Leylegian, John C.; Bhaskaran, Rajesh
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 8, Problem 23P
In a flow of air between parallel plates spaced 0.03 m apart, the centerline velocity is 1.2 m/s and that 5 mm from the pipe wall is 0.8 m/s. Assuming laminar flow, determine the wall shear stress using each of the measurements. Explain whether the flow is laminar or turbulent.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Oil flows in a pipe 80 mm bore diameter with a mean velocity of 0.4 m/s. The density is 890 kg/m3
and the viscosity is 0.075 Ns/m2. Show that the flow is laminar
Water is pumped through a horizontal, smooth circular pipe at a bulk velocity of 0.4 m/s. The pipe has an internal diameter
of 250 mm and a total length of 1600 m. The pipe flow is fully-developed. The shear viscosity of the water is 1 mPa.s.
Calculate the power required to pump the water if the fluid flow is laminar. Provide your answer to two decimal places.
Consider the laminar flow between two parallel plates (separation: a) where theupper plate moves with a constant velocity U, while the bottom one is stationary. Theflow is generated due to the combined effect of an applied pressure gradient and theupper moving plate.The velocity profile is shown in the image. (a) Find the shear stress of the equation shown in the image. (b) Find the volumetric flow rate if the width of both plates is W.(c) Find the average velocity.(d) Find the maximum velocity. At which location is the velocity maximum?
Chapter 8 Solutions
Fox And Mcdonald's Introduction To Fluid Mechanics
Ch. 8 - Consider incompressible flow in a circular...Ch. 8 - What is the maximum flow rate of air that may...Ch. 8 - For flow in circular tubes, transition to...Ch. 8 - An incompressible fluid flows between two infinite...Ch. 8 - Oil is confined in a 4-in.-diameter cylinder by a...Ch. 8 - Viscous oil flows steadily between parallel...Ch. 8 - Calculate for the flow in this two-dimensional...Ch. 8 - The velocity profile in a two-dimensional open...Ch. 8 - A large mass is supported by a piston of diameter...Ch. 8 - A hydraulic jack supports a load of 9000 kg. The...
Ch. 8 - The basic component of a pressure gage tester...Ch. 8 - When a horizontal laminar flow occurs between two...Ch. 8 - In a laminar flow of water of 0:007 m3/s between...Ch. 8 - Consider the simple power-law model for a...Ch. 8 - A sealed journal bearing is formed from concentric...Ch. 8 - Using the profile of Problem 8.15, show that the...Ch. 8 - In a laminar flow between parallel plates spaced...Ch. 8 - A fluid of specific gravity 0.90 flows at a...Ch. 8 - Two immiscible fluids are contained between...Ch. 8 - The record-read head for a computer disk-drive...Ch. 8 - Consider steady, incompressible, and fully...Ch. 8 - In a flow of air between parallel plates spaced...Ch. 8 - Consider fully developed flow between parallel...Ch. 8 - Free-surface waves begin to form on a laminar...Ch. 8 - A viscous-shear pump is made from a stationary...Ch. 8 - The efficiency of the viscous-shear pump of Fig....Ch. 8 - An inventor proposes to make a viscous timer by...Ch. 8 - A continuous belt, passing upward through a...Ch. 8 - A wet paint film of uniform thickness, , is...Ch. 8 - Consider first water and then SAE 10W lubricating...Ch. 8 - Using Eq. A.3 in Appendix A for the viscosity of...Ch. 8 - Consider fully developed laminar flow in the...Ch. 8 - Carbon dioxide flows in a 50-mm-diameter pipe at a...Ch. 8 - Consider fully developed laminar flow in a...Ch. 8 - What is the largest diameter of pipeline that may...Ch. 8 - Consider fully developed laminar flow in the...Ch. 8 - Consider fully developed pressure-driven flow in a...Ch. 8 - In the laminar flow of an oil of viscosity 1 Pa_s,...Ch. 8 - In a laminar flow of 0.007 m3/s in a...Ch. 8 - Consider blood flow in an artery. Blood is...Ch. 8 - The classic Poiseuille flow (Eq. 8.12), is for...Ch. 8 - For pressure-driven, steady, fully developed...Ch. 8 - In a laminar flow in a 12-in.-diameter pipe the...Ch. 8 - A fluid of specific gravity 0.90 flows at a...Ch. 8 - In a food industry plant, two immiscible fluids...Ch. 8 - A horizontal pipe carries fluid in fully developed...Ch. 8 - Kerosene is pumped through a smooth tube with...Ch. 8 - In a flow of water in a 0.3-m-diameter pipe, the...Ch. 8 - A liquid drug, with the viscosity and density of...Ch. 8 - Laufer [5] measured the following data for mean...Ch. 8 - Equation 8.23 gives the power-law velocity profile...Ch. 8 - Consider fully developed laminar flow of water...Ch. 8 - Consider fully developed laminar flow in a...Ch. 8 - If the turbulent velocity profile in a pipe 0.6 m...Ch. 8 - Water flows in a horizontal constant-area pipe;...Ch. 8 - For a given volume flow rate and piping system,...Ch. 8 - Consider the pipe flow from the water tower of...Ch. 8 - At the inlet to a constant-diameter section of the...Ch. 8 - When oil (kinematic viscosity 1 104 m2/s,...Ch. 8 - When fluid of specific weight 50 lb/ft3 flows in a...Ch. 8 - If the head lost in 30-m-diameter of...Ch. 8 - Water flows at 10 L/min through a horizontal...Ch. 8 - Laufer [5] measured the following data for mean...Ch. 8 - Water is pumped at the rate of 0.075 m3/s from a...Ch. 8 - Just downstream from the nozzle tip the velocity...Ch. 8 - A horizontal nozzle having a cylindrical tip of 75...Ch. 8 - When 0.3 m3/s of water flows through a...Ch. 8 - Water flows through a 2-in.-diameter tube that...Ch. 8 - A 50-mm-diameter nozzle terminates a vertical...Ch. 8 - A 12-in.-diameter pipe leaves a reservoir of...Ch. 8 - A water pipe gradually changes from 6-in.-diameter...Ch. 8 - Air at standard conditions flows through a sudden...Ch. 8 - Water flows from a larger pipe, diameter D1 = 100...Ch. 8 - Flow through a sudden contraction is shown. The...Ch. 8 - A flow rate of 1.01/min of oil of specific gravity...Ch. 8 - Water flows in a smooth pipeline at a Reynolds...Ch. 8 - Air flows out of a clean room test chamber through...Ch. 8 - A conical diffuser is used to expand a pipe flow...Ch. 8 - By applying the basic equations to a control...Ch. 8 - Water at 45C enters a shower head through a...Ch. 8 - Water discharges to atmosphere from a large...Ch. 8 - A laboratory experiment is set up to measure...Ch. 8 - Oil with kinematic viscosity = 7.5 104 ft2/s...Ch. 8 - Water from a pump flows through a 9-in.-diameter...Ch. 8 - A 5-cm-diameter potable water line is to be run...Ch. 8 - A system for testing variable-output pumps...Ch. 8 - Two reservoirs are connected by three clean...Ch. 8 - Water, at volume flow rate Q = 0.75 ft3/s, is...Ch. 8 - When you drink a beverage with a straw, you need...Ch. 8 - What flow rate (gpm) will be produced in a...Ch. 8 - Gasoline flows in a long, underground pipeline at...Ch. 8 - An 18-in.-diameter new riveted steel pipeline 1000...Ch. 8 - What diameter of smooth masonry pipe is needed to...Ch. 8 - Water flows steadily in a 125-mm-diameter...Ch. 8 - Two galvanized iron pipes of diameter D are...Ch. 8 - A mining engineer plans to do hydraulic mining...Ch. 8 - The flow of water through a 150-mm-diameter...Ch. 8 - The fluid flowing has specific gravity 0.90; V75=6...Ch. 8 - Water is flowing. Calculate the direction and...Ch. 8 - Investigate the effect of tube roughness on flow...Ch. 8 - Investigate the effect of tube length on water...Ch. 8 - For the pipe flow into a reservoir of Example 8.5...Ch. 8 - Calculate the magnitude and direction of the...Ch. 8 - Experimental determination of local losses and...Ch. 8 - Water is flowing. Calculate the gage reading when...Ch. 8 - The siphon shown is fabricated from 50-mm-i.d....Ch. 8 - A large open water tank has a horizontal cast iron...Ch. 8 - A tank containing 30 m3 of kerosene is to be...Ch. 8 - A 90 screwed elbow is installed in a...Ch. 8 - Calculate the total tension in the bolts. Neglect...Ch. 8 - A horizontal 50-mm-diameter PVC pipeline leaves...Ch. 8 - You are watering your lawn with an old hose....Ch. 8 - Your boss claims that for pipe flow the flow rate,...Ch. 8 - A hydraulic press is powered by a remote...Ch. 8 - One-quarter of a cubic meter per second of liquid...Ch. 8 - Calculate the flow rate from this water tank if...Ch. 8 - A 6-ft-diameter pipeline 4 miles long between two...Ch. 8 - A new industrial plant requires a water flow rate...Ch. 8 - What diameter water pipe is required to handle...Ch. 8 - A pipe friction experiment for air consists of a...Ch. 8 - Oil has been flowing from a large tank on a hill...Ch. 8 - The pressure rise across a water pump is 35 psi...Ch. 8 - Cooling water is pumped from a reservoir to rock...Ch. 8 - You are asked to size a pump for installation in...Ch. 8 - Heavy crude oil (SG = 0.925 and = 1.0 104 m2/s)...Ch. 8 - Petroleum products are transported over long...Ch. 8 - The head versus capacity curve for a certain fan...Ch. 8 - A swimming pool has a partial-flow filtration...Ch. 8 - Water at 65C flows through a 75-mm-diameter...Ch. 8 - A 12 in. 6 in. Venturi meter is installed in a...Ch. 8 - A 1-in.-diameter nozzle is attached to a...Ch. 8 - A sharp-edged orifice with conventional pressure...Ch. 8 - A venturi meter with a 3-in.-diameter throat is...Ch. 8 - Air flows through a venturi meter with a...Ch. 8 - Water at 10C flows steadily through a venturi. The...Ch. 8 - Drinking straws are to be used to improve the air...Ch. 8 - In some western states, water for mining and...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
A program that calculates the total of a series of numbers typically has what two elements?
Starting Out with Programming Logic and Design (5th Edition) (What's New in Computer Science)
_____ is data the computer collects from the world outside of the computer.
Starting Out With Visual Basic (8th Edition)
Show a snippet of PHP code for creating a recordset. Explain the meaning of the code.
Database Concepts (8th Edition)
Identify some classes as well as some of their internal characteristics, that can be used in an object-oriented...
Computer Science: An Overview (13th Edition) (What's New in Computer Science)
2-1 List the five types of measurements that form the
basis of traditional ptane surveying-
Elementary Surveying: An Introduction To Geomatics (15th Edition)
Could the stub arbor-mounted face mill shown in Figure 24.8 be used to machine a T-slot? or why not?
Degarmo's Materials And Processes In Manufacturing
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A viscous fluid flows in a 0.11-m-diameter pipe such that its velocity measured 0.014 m away from the pipe wall is 0.8 m/s. If the flow is laminar, determine (a) the centerline velocity and (b) the flowrate. (a) Vc = i m/s (b) Q = i x 10-³ m³/sarrow_forwardA 0.4 m-diameter pipe bend shown in the diagram is carrying crude oil (S = 0.65) with a steady flow with velocity of 3 m/s. The bend has an angle of 30° and lies in a vertical plane. The volume of oil in the bend is 1.2 m3, and the empty weight of the bend is 4 kN. Assume the pressure along the centerline of the bend is constant with a value of 85 kPa gage. Water density = 1000 kg/m3, g= 9.81 m/s?, Patm = 100 kPa, frictionless flow. Answer the following: Bolted flange Flow 30 The net pressure force along the horizontal direction (N). Net out flow rate of momentum through the control surface (N) in the horizontal direction. Absolute value.arrow_forwardQuestion3 Explain briefly what is meant by fully developed laminar flow. The velocity u at any radius r in fully developed laminar flow through a straight horizontal pipe of internal radius ro is given by u= (1/4µ)(ro2 - r2)dp/dx dp/dx is the pressure gradient in the direction of flow and u is the dynamic viscosity. Show that the pressure drop over a length L is given by the following formula. Ap = 32µLu/D? The wall skin friction coefficient is defined as Cr = 2t( pum2). Show that C= 16/Re where Re = pumD/u and p is the density, um is the mean velocity and t, is the wall shear stress.arrow_forward
- A 0.7 m-diameter pipe bend shown in the diagram is carrying crude oil (S = 0.6) with a steady flow with velocity of 3.5 m/s. The bend has an angle of 30° and lies in a vertical plane. The volume of oil in the bend is 1.2 m?, and the empty weight of the bend is 4 kN. Assume the pressure along the centerline of the bend is constant with a value of 85 kPa gage. Water density = 1000 kg/m³, g= 9.81 m/s?, Patm = 100 kPa. Answer the following: %3! Bolted flange Flow 30arrow_forwardAn oil with density of 900 kg/m2 and viscosity of 0.0002 m2/s flows upward through a 10 m long pipe segment inclined at 40℃ with the horizontal. The pressure a the upstream and downstream end of the pipe are 350 kPa and 250 kPa, respectively. The diameter of the pipe is 60 mm. Assume the flow is laminar. What is the head loss along the pipe segment? 3.77 4.9 5.35 6.1 What is the velocity of the fluid flow? 3.37 2.95 2.08 2.7 Which of the following gives the Reynold’s number? 810.9 624.21 1011.15 885.63arrow_forwardProblem5 A flow develops between two parallel plates, each of area (A). The plates are separated by a gap (H) with the lower plate always fixed. The flow can be generated by imposing a constant positive pressure drop (AP/L) and/or moving the upper plate at a constant velocity UT. The general expression of the velocity in the x-direction is: Only part 1 ΔΡ u(y) = -(Hy - y²) + sgn U₁ 2μ L In the above equation is the fluid viscosity, and sgn=+1 if the upper plate is pulled in the positive x- direction while sgn=-1 if the upper plate is pulled in the negative x-direction. (1) Determine the expression of the drag force on the lower fixed plate in each of the following cases: y H Case1: Flow is driven by the moving upper plate and there is no pressure drop (AP/L =0). Case2: The flow is driven by the pressure drop but the upper plate is also fixed (U₁=0) Case3: Both the pressure drop and moving upper plate are responsible for the flow. (2) Which one of the above three cases leads to the…arrow_forward
- The ethanol solution is pumped into a vessel 25 m above the reference point through a 25 mm diameter steel pipe at a rate of 10 m3 / hr. The pipe length is 35m and there are 2 elbows. Calculate the power requirements of the pump. The properties of the solution are density 975 kg / m3 and viscosity 4x 10-4 Pa s. a. Reynold number = Answer b. Loss of Energy along the straight pipe = Answer J / kg. c. Losing Energy at curves = Answer J / kg. d. Total energy to overcome friction = Answer J / kg. e. Energy to increase water according to height = Answer J / kg. f. The theoretical energy requirement of the pump ethanol / second = Answer J / kg. g. Actual pump power requirement = Answer watt.arrow_forwardWater at 25˚C is flowing past a long cylinder at a velocity of 1.2 m/s in a large tunnel. Theaxis of the cylinder is perpendicular to the direction of flow. The diameter of the cylinder is0.12 m. What is the force per meter length on the cylinderarrow_forwardWater is pumped at a rate of 24.33 m/s from tank (A) and out through a 298.05 m pipe to tank (B). The surface roughness of the pipe is 0.046 mm. When the water levels are as shown in the given figure, the head provided by the pump is 70.54 m. Calculate the pipe diameter (mm) if the water temperature is 10°C (do not assume the water mass density and the viscosity). Use f = 0.02 for the first iteration and try only one more iterations (two in total) by using Swamee and Jain formula. Elevation Elevatjon - = 140 m = 135 m Tank (B) Elevation = 100 m Tank (A) pump Elevation = 95 marrow_forward
- Q1: The velocity distribution for laminar flow between parallel plates is given by 2y h u Umax = 1. 1 where h is the distance separating the plates and the origin is placed midway between the plates. Consider a flow of water at 15C with maximum speed of 0.05 m/s and h 5 0.1 mm. Calculate the force on a 1 m^2 section of the lower plate and give its direction. Note: μ 1.14 x 10-4 Pa.s =arrow_forwardInside a 148 mm x 340 mm rectangular duct, air at 26 N/s, 22 deg C, and 108 kPa flows. Solve for the volume flux if R = 28.7 m/K. Express your answer in 3 decimal places.arrow_forward3. Explain briefly what is meant by fully developed laminar flow. The velocity u at any radius r in fully developed laminar flow through a straight horizontal pipe of internal radius ro is given by u= (1/4µ)(ro2-r2)dp/dx dp/dx is the pressure gradient in the direction of flow and u is the dynamic viscosity. Show that the pressure drop over a length L is given by the following formula. Ap=32μLu/D² The wall skin friction coefficient is defined as C = 21/(pum²). Show that C= 16/Re where Re = pumD/μ and p is the density, um is the mean velocity and to is the wall shear stress.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Unit Conversion the Easy Way (Dimensional Analysis); Author: ketzbook;https://www.youtube.com/watch?v=HRe1mire4Gc;License: Standard YouTube License, CC-BY