Fox And Mcdonald's Introduction To Fluid Mechanics
9th Edition
ISBN: 9781118921876
Author: Pritchard, Philip J.; Leylegian, John C.; Bhaskaran, Rajesh
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 8, Problem 90P
A laboratory experiment is set up to measure pressure drop for flow of water through a smooth tube. The tube diameter is 15.9 mm, and its length is 3.56 m. Flow enters the tube from a reservoir through a square-edged entrance. Calculate the volume flow rate needed to obtain turbulent flow in the tube. Evaluate the reservoir height differential required to obtain turbulent flow in the tube.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A pipe is often used to assess the
flow rate of water in the center of a
pipe with an internal diameter of
102.3 mm at 20°C (density =
998.3 kg/m3, viscosity = 1.005
CP). The pitot tube coefficient is
0.98, and the manometer reading
is 10 mm of mercury at 20°C
(density = 13,545. 85 kg/m3).
Compute the velocity at the
center and the water's volumetric
flow rate
The ethanol solution is pumped into a vessel 25 m above the reference point through a 25 mm diameter steel pipe at a rate of 8 m3/hour. The length of the pipe is 35m and there are 2 elbows. Calculate the pump power requirement. The properties of the solution are density 975 kg/m3 and viscosity 4x 10-4 Pa s.
a. Reynolds number =
b. Energy Loss along a straight pipe = J/kg.
c. Energy Loss in turns = J/kg.
d. Total energy to overcome friction = J/kg.
e. Energy to raise water to height = J/kg.
f. Theoretical energy requirement of the pump kg ethanol/second = J/kg.
g. Actual pump power requirement = watt.
Two reservoirs are connected by a vertical pipe as in Figure 1 below. The distance between
both surface levels is 6 m. The fluid is ethyl alcohol at 20 degrees centigrade (density=789
kg/m³, dynamic viscosity=0.0012 kg/m/s), and the tanks are very wide. Please determine the
limiting pipe diameter for which the flow abandons the laminar regime and becomes turbulent
flow.
6 m
4.5 m
Chapter 8 Solutions
Fox And Mcdonald's Introduction To Fluid Mechanics
Ch. 8 - Consider incompressible flow in a circular...Ch. 8 - What is the maximum flow rate of air that may...Ch. 8 - For flow in circular tubes, transition to...Ch. 8 - An incompressible fluid flows between two infinite...Ch. 8 - Oil is confined in a 4-in.-diameter cylinder by a...Ch. 8 - Viscous oil flows steadily between parallel...Ch. 8 - Calculate for the flow in this two-dimensional...Ch. 8 - The velocity profile in a two-dimensional open...Ch. 8 - A large mass is supported by a piston of diameter...Ch. 8 - A hydraulic jack supports a load of 9000 kg. The...
Ch. 8 - The basic component of a pressure gage tester...Ch. 8 - When a horizontal laminar flow occurs between two...Ch. 8 - In a laminar flow of water of 0:007 m3/s between...Ch. 8 - Consider the simple power-law model for a...Ch. 8 - A sealed journal bearing is formed from concentric...Ch. 8 - Using the profile of Problem 8.15, show that the...Ch. 8 - In a laminar flow between parallel plates spaced...Ch. 8 - A fluid of specific gravity 0.90 flows at a...Ch. 8 - Two immiscible fluids are contained between...Ch. 8 - The record-read head for a computer disk-drive...Ch. 8 - Consider steady, incompressible, and fully...Ch. 8 - In a flow of air between parallel plates spaced...Ch. 8 - Consider fully developed flow between parallel...Ch. 8 - Free-surface waves begin to form on a laminar...Ch. 8 - A viscous-shear pump is made from a stationary...Ch. 8 - The efficiency of the viscous-shear pump of Fig....Ch. 8 - An inventor proposes to make a viscous timer by...Ch. 8 - A continuous belt, passing upward through a...Ch. 8 - A wet paint film of uniform thickness, , is...Ch. 8 - Consider first water and then SAE 10W lubricating...Ch. 8 - Using Eq. A.3 in Appendix A for the viscosity of...Ch. 8 - Consider fully developed laminar flow in the...Ch. 8 - Carbon dioxide flows in a 50-mm-diameter pipe at a...Ch. 8 - Consider fully developed laminar flow in a...Ch. 8 - What is the largest diameter of pipeline that may...Ch. 8 - Consider fully developed laminar flow in the...Ch. 8 - Consider fully developed pressure-driven flow in a...Ch. 8 - In the laminar flow of an oil of viscosity 1 Pa_s,...Ch. 8 - In a laminar flow of 0.007 m3/s in a...Ch. 8 - Consider blood flow in an artery. Blood is...Ch. 8 - The classic Poiseuille flow (Eq. 8.12), is for...Ch. 8 - For pressure-driven, steady, fully developed...Ch. 8 - In a laminar flow in a 12-in.-diameter pipe the...Ch. 8 - A fluid of specific gravity 0.90 flows at a...Ch. 8 - In a food industry plant, two immiscible fluids...Ch. 8 - A horizontal pipe carries fluid in fully developed...Ch. 8 - Kerosene is pumped through a smooth tube with...Ch. 8 - In a flow of water in a 0.3-m-diameter pipe, the...Ch. 8 - A liquid drug, with the viscosity and density of...Ch. 8 - Laufer [5] measured the following data for mean...Ch. 8 - Equation 8.23 gives the power-law velocity profile...Ch. 8 - Consider fully developed laminar flow of water...Ch. 8 - Consider fully developed laminar flow in a...Ch. 8 - If the turbulent velocity profile in a pipe 0.6 m...Ch. 8 - Water flows in a horizontal constant-area pipe;...Ch. 8 - For a given volume flow rate and piping system,...Ch. 8 - Consider the pipe flow from the water tower of...Ch. 8 - At the inlet to a constant-diameter section of the...Ch. 8 - When oil (kinematic viscosity 1 104 m2/s,...Ch. 8 - When fluid of specific weight 50 lb/ft3 flows in a...Ch. 8 - If the head lost in 30-m-diameter of...Ch. 8 - Water flows at 10 L/min through a horizontal...Ch. 8 - Laufer [5] measured the following data for mean...Ch. 8 - Water is pumped at the rate of 0.075 m3/s from a...Ch. 8 - Just downstream from the nozzle tip the velocity...Ch. 8 - A horizontal nozzle having a cylindrical tip of 75...Ch. 8 - When 0.3 m3/s of water flows through a...Ch. 8 - Water flows through a 2-in.-diameter tube that...Ch. 8 - A 50-mm-diameter nozzle terminates a vertical...Ch. 8 - A 12-in.-diameter pipe leaves a reservoir of...Ch. 8 - A water pipe gradually changes from 6-in.-diameter...Ch. 8 - Air at standard conditions flows through a sudden...Ch. 8 - Water flows from a larger pipe, diameter D1 = 100...Ch. 8 - Flow through a sudden contraction is shown. The...Ch. 8 - A flow rate of 1.01/min of oil of specific gravity...Ch. 8 - Water flows in a smooth pipeline at a Reynolds...Ch. 8 - Air flows out of a clean room test chamber through...Ch. 8 - A conical diffuser is used to expand a pipe flow...Ch. 8 - By applying the basic equations to a control...Ch. 8 - Water at 45C enters a shower head through a...Ch. 8 - Water discharges to atmosphere from a large...Ch. 8 - A laboratory experiment is set up to measure...Ch. 8 - Oil with kinematic viscosity = 7.5 104 ft2/s...Ch. 8 - Water from a pump flows through a 9-in.-diameter...Ch. 8 - A 5-cm-diameter potable water line is to be run...Ch. 8 - A system for testing variable-output pumps...Ch. 8 - Two reservoirs are connected by three clean...Ch. 8 - Water, at volume flow rate Q = 0.75 ft3/s, is...Ch. 8 - When you drink a beverage with a straw, you need...Ch. 8 - What flow rate (gpm) will be produced in a...Ch. 8 - Gasoline flows in a long, underground pipeline at...Ch. 8 - An 18-in.-diameter new riveted steel pipeline 1000...Ch. 8 - What diameter of smooth masonry pipe is needed to...Ch. 8 - Water flows steadily in a 125-mm-diameter...Ch. 8 - Two galvanized iron pipes of diameter D are...Ch. 8 - A mining engineer plans to do hydraulic mining...Ch. 8 - The flow of water through a 150-mm-diameter...Ch. 8 - The fluid flowing has specific gravity 0.90; V75=6...Ch. 8 - Water is flowing. Calculate the direction and...Ch. 8 - Investigate the effect of tube roughness on flow...Ch. 8 - Investigate the effect of tube length on water...Ch. 8 - For the pipe flow into a reservoir of Example 8.5...Ch. 8 - Calculate the magnitude and direction of the...Ch. 8 - Experimental determination of local losses and...Ch. 8 - Water is flowing. Calculate the gage reading when...Ch. 8 - The siphon shown is fabricated from 50-mm-i.d....Ch. 8 - A large open water tank has a horizontal cast iron...Ch. 8 - A tank containing 30 m3 of kerosene is to be...Ch. 8 - A 90 screwed elbow is installed in a...Ch. 8 - Calculate the total tension in the bolts. Neglect...Ch. 8 - A horizontal 50-mm-diameter PVC pipeline leaves...Ch. 8 - You are watering your lawn with an old hose....Ch. 8 - Your boss claims that for pipe flow the flow rate,...Ch. 8 - A hydraulic press is powered by a remote...Ch. 8 - One-quarter of a cubic meter per second of liquid...Ch. 8 - Calculate the flow rate from this water tank if...Ch. 8 - A 6-ft-diameter pipeline 4 miles long between two...Ch. 8 - A new industrial plant requires a water flow rate...Ch. 8 - What diameter water pipe is required to handle...Ch. 8 - A pipe friction experiment for air consists of a...Ch. 8 - Oil has been flowing from a large tank on a hill...Ch. 8 - The pressure rise across a water pump is 35 psi...Ch. 8 - Cooling water is pumped from a reservoir to rock...Ch. 8 - You are asked to size a pump for installation in...Ch. 8 - Heavy crude oil (SG = 0.925 and = 1.0 104 m2/s)...Ch. 8 - Petroleum products are transported over long...Ch. 8 - The head versus capacity curve for a certain fan...Ch. 8 - A swimming pool has a partial-flow filtration...Ch. 8 - Water at 65C flows through a 75-mm-diameter...Ch. 8 - A 12 in. 6 in. Venturi meter is installed in a...Ch. 8 - A 1-in.-diameter nozzle is attached to a...Ch. 8 - A sharp-edged orifice with conventional pressure...Ch. 8 - A venturi meter with a 3-in.-diameter throat is...Ch. 8 - Air flows through a venturi meter with a...Ch. 8 - Water at 10C flows steadily through a venturi. The...Ch. 8 - Drinking straws are to be used to improve the air...Ch. 8 - In some western states, water for mining and...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
Put It Back C++ input stream classes have two member functions, unget() and put back(), that can be used to und...
Starting Out with C++: Early Objects (9th Edition)
Figure 2-26 shows a grade report that is mailed to students at the end of each semester. Prepare an ERD reflect...
Modern Database Management
For the circuit shown, find (a) the voltage υ, (b) the power delivered to the circuit by the current source, an...
Electric Circuits. (11th Edition)
17–1C A high-speed aircraft is cruising in still air. How does the temperature of air at the nose of the aircra...
Thermodynamics: An Engineering Approach
Write a statement or statements that can be used in a Java program to display the following on the screen: Java...
Java: An Introduction to Problem Solving and Programming (8th Edition)
In the following exercises, write a program to carry out the task. The program should use variables for each of...
Introduction To Programming Using Visual Basic (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- You are asked to calculate the pressure drop in a straight pipe. Air of density 1.225 kg/m³ is flowing through the pipe. The diameter of the pipe is 25 mm. The velocity of the flow is 1 m/s. The viscosity of air is given as 1.85 x 10-5 Pas. From this information the Reynolds number was calculated to be 1655. Determine the Head drop if the pipe is 100 m in length. Hint: For laminar flow the fanning friction factor can be calculated as 16/Re 4 fLū² hs 2gD 2 Answer: Answerarrow_forwardWater is pumped at a rate of 21.4 m/s from tank (A) and out through a 300.5 m pipe to tank (B). The surface roughness of the pipe is 0.046 mm. When the water levels are as shown in the given figure, the head provided by the pump is 70 m, Calculate the pipe diameter (mm) if the water temperature is 10°C (do not assume the water mass density and the ViScosity), Usef 0.02 for the first iteration and try only one more iterations (two in total) by using Swamee and Jain formula. Elevation 135 Elevation 140 m Tank (B) Tievation 100m Tank LA) Jund: Elevitions in Write the answer for any numbers after the declmalarrow_forwardWater is pumped at a rate of 24.33 m/s from tank (A) and out through a 298.05 m pipe to tank (B). The surface roughness of the pipe is 0.046 mm. When the water levels are as shown in the given figure, the head provided by the pump is 70.54 m. Calculate the pipe diameter (mm) if the water temperature is 10°C (do not assume the water mass density and the viscosity). Use f = 0.02 for the first iteration and try only one more iterations (two in total) by using Swamee and Jain formula. Elevation Elevatjon - = 140 m = 135 m Tank (B) Elevation = 100 m Tank (A) pump Elevation = 95 marrow_forward
- Problem 6. A laboratory experiment is set up to measure the pressure drop for water flowing through a smooth tube as shown. The tube has a diameter of 1.60 cm and a length of 3.50 m. The water enters the tube from a reservoir through a square-edged entrance. The water exits the tube through an abrupt exit. (a) Calculate the average velocity and volumetric flow rate (in L/min) needed to obtain turbulent flow in the tube. (b) Calculate the reservoir height required to obtain turbulent flow in the tube. large tank of H water L D pipe flow NOTE: Many problems in Chapter 8 involve determination of the Moody friction factor, f, for turbulent flow which is a function of the Reynolds number, Red, and dimensionless roughness, e/D. For most calculations, f can be determined using either (1) the Blasius correlation for low Red flow in smooth pipes, (2) a correlation for fully-turbulent flow for high Red flow in very rough pipes, or (3) read from the Moody Diagram (a plot of the Colebrook…arrow_forwardA 2-ft inner diameter (ID) metal pipe has a roughness ε = 0.003 ft, and carries water(μ = 1 cP) at 15 ft/s. A fellow engineer suggests that the flow rate could be increased using asmooth plastic liner (i.e., drawn tubing) that reduces the ID to 1.9 ft.(a) Calculate the pressure drop in psi/ft both without and with the liner at theoriginal volumetric flow rate. [ answers should be~ 0.016 psi/ft, ~ 0.01 psi/ft](b) Calculate the flow rate in gpm both without and with the liner if the pressure dropis maintained at 0.01 psi/ft in both cases. [answers should be~ 16,500 gpm, ~ 21,700 gpmPlease use the right equations to solve correctlyarrow_forwardA 2-ft inner diameter (ID) metal pipe has a roughness ε = 0.003 ft, and carries water(μ = 1 cP) at 15 ft/s. A fellow engineer suggests that the flow rate could be increased using asmooth plastic liner (i.e., drawn tubing) that reduces the ID to 1.9 ft.(a) Calculate the pressure drop in psi/ft both without and with the liner at theoriginal volumetric flow rate. [ answers should be~ 0.016 psi/ft, ~ 0.01 psi/ft](b) Calculate the flow rate in gpm both without and with the liner if the pressure dropis maintained at 0.01 psi/ft in both cases. [answers should be~ 16,500 gpm, ~ 21,700 gpmarrow_forward
- A venturi meter is introduced in a 300 mm diameter horizontal pipeline carrying a liquid under a pressure of 150 kPa. The throat diameter of the meter is 100 mm and the pressure at the throat is 400 mm of mercury below atmosphere. If 3% of the differential pressure is lost between inlet and the throat, determine the flow rate of the pipeline **provide complete solution using bernoullis equation..provide illustration with labels like datum line and such** Show all formula derivationarrow_forwardA centrifugal pump is used to supply a highly viscous fluid to a chemical plant. The chemicalplant is located at a height of 20 m from the pumping station level. The flow rate required tobe pumped is 0.005 m3 /s. The pipe diameter used for pumping is 30 cm and the total length ofthe pipeline is 50 m. The pipe exits to atmospheric conditions. Compute the Reynolds numberand determine whether the flow is laminar or turbulent. Determine the pressure that should bedelivered by the pump at its exit in order to maintain the flow. Also compute the power inputfor the pump assuming a pump efficiency of 100 %. Take the viscosity of the fluid to be0.01Pa.s. Take the density of the fluid to be 1500 Kg/m3 .arrow_forwardWater flowing in a straight cylinder tube with radius of 3mm, has a maximum velocity U0=15cm/s. If the density and viscosity of the water are 1000kg/m3 and 1.0 x 10 -3 (Pa.s), and the flow is fully developed with a profile of u=U0(1-(r/a)2), calculate the Reynold’s number of the flow; calculate the mass flow rate in units of kg/s in the tube If the tube has a length of 50cm, calculate the flow resistance force of the tube wall imposed to the flow.arrow_forward
- A venturi meter is introduced in a 300 mm diameter horizontal pipeline carrying a liquid under a pressure of 150 kPa. The throat diameter of the me- ter is 100 mm and the pressure at the throat is 400 mm of mercury below atmosphere. If 3% of the differential pressure is lost between inlet and the throat, determine the flow rate of the pipeline. PLEASE USE BERNOULLI'S ENERGY EQUATION. INCLUDE COMPLETE SOLUTIONarrow_forwardA venturi meter having a throat diameter of 100mm is fitted into a pipeline which has a diameter of 250mm through which water is flowing. The pressure difference between the entry and throat tapping measured by a U-Tube Manometer containing mercury of a relative density of 13.6 and the connections are filled with the water flowing in the pipeline. If the difference of level indicated by the mercury in the U-tube is 0.63m, calculate: The theoretical volumetric flow rate and The actual volumetric flowrate if the coefficient of discharge is 0.9arrow_forwardThe air supply to an oil-engine is measured by being taken directly from the atmosphere into a large reservoir through a sharp-edged orifice 50 mm diameter. The pressure difference across the orifice is measured by an alcohol manometer set at a slope of arcsin 0.1 to the horizontal. Calculate the volume flow rate of air if the manometer reading is 271 mm, the relative density of alcohol is 0.80, the coefficient of discharge for the orifice is 0.602 and atmospheric pressure and temperature are respectively 755 mmHg and 15.8 °C. (You may assume R = 287 J · kg¯' ·K!.)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
8.01x - Lect 27 - Fluid Mechanics, Hydrostatics, Pascal's Principle, Atmosph. Pressure; Author: Lectures by Walter Lewin. They will make you ♥ Physics.;https://www.youtube.com/watch?v=O_HQklhIlwQ;License: Standard YouTube License, CC-BY
Dynamics of Fluid Flow - Introduction; Author: Tutorials Point (India) Ltd.;https://www.youtube.com/watch?v=djx9jlkYAt4;License: Standard Youtube License