Fox And Mcdonald's Introduction To Fluid Mechanics
9th Edition
ISBN: 9781118921876
Author: Pritchard, Philip J.; Leylegian, John C.; Bhaskaran, Rajesh
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 8, Problem 22P
Consider steady, incompressible, and fully developed laminar flow of a viscous liquid down an incline with no pressure gradient. The velocity profile was derived in Example 5.9. Plot the velocity profile. Calculate the kinematic viscosity of the liquid if the film thickness on a 30° slope is 0.8 mm and the maximum velocity is 15.7 mm/s.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
liquid (density 800kg/m3, viscosity 10−3 kg/ms) has to be supplied at a mean speed of 2m/s through a pipe of diameter 12.5mm with a surface roughness equivalent to that for structural steel. What is the magnitude of the pressure gradient necessary to achieve this flow? Your answer should have a positive sign and be to the nearest 10 Pa/m. You may wish to use the Moody diagram.
Problem 4: Differential Analysis
Water flows in a thin layer between a wall and a vertical plate separated by a distance h = 1 mm.
The wall is stationary while the plate moves upwards with a velocity Vplate = 1 m/s. Assume
p=1000 kg/m³, v = 10-6 m²/s.
1. Assuming that the flow is laminar, steady, and fully developed, use differential analysis
(Navier-Stokes) to calculate the velocity profile.
2. Calculate the flow rate per unit width.
3. Compute the Reynolds number in the water and air flow and determine if the conditions are
laminar or turbulent.
b-1 mm
g-10
Pam
Zoomed-in fully-developed region
V-1 m/s
Figure 4: Flow between stationary wall and moving plate.
The velocity distribution in a fully developed laminar pipe flow is given by where UCL is the velocity at the centerline, and R is the pipe radius. The fluid density is ρ, and its viscosity is µ. (a) Find the average velocity . (b) Write down the Reynolds number Re based on average velocity and pipe diameter. At what approximate value of this Reynolds number would you expect the flow to become turbulent? Why is this value only approximate? (c) Assume that the stress/strain rate relationship for the fluid is Newtonian. Find the wall shear stress τw in terms of µ, R and UCL. Express the local skin friction coeffient Cf in terms of the Reynolds number Re.
Chapter 8 Solutions
Fox And Mcdonald's Introduction To Fluid Mechanics
Ch. 8 - Consider incompressible flow in a circular...Ch. 8 - What is the maximum flow rate of air that may...Ch. 8 - For flow in circular tubes, transition to...Ch. 8 - An incompressible fluid flows between two infinite...Ch. 8 - Oil is confined in a 4-in.-diameter cylinder by a...Ch. 8 - Viscous oil flows steadily between parallel...Ch. 8 - Calculate for the flow in this two-dimensional...Ch. 8 - The velocity profile in a two-dimensional open...Ch. 8 - A large mass is supported by a piston of diameter...Ch. 8 - A hydraulic jack supports a load of 9000 kg. The...
Ch. 8 - The basic component of a pressure gage tester...Ch. 8 - When a horizontal laminar flow occurs between two...Ch. 8 - In a laminar flow of water of 0:007 m3/s between...Ch. 8 - Consider the simple power-law model for a...Ch. 8 - A sealed journal bearing is formed from concentric...Ch. 8 - Using the profile of Problem 8.15, show that the...Ch. 8 - In a laminar flow between parallel plates spaced...Ch. 8 - A fluid of specific gravity 0.90 flows at a...Ch. 8 - Two immiscible fluids are contained between...Ch. 8 - The record-read head for a computer disk-drive...Ch. 8 - Consider steady, incompressible, and fully...Ch. 8 - In a flow of air between parallel plates spaced...Ch. 8 - Consider fully developed flow between parallel...Ch. 8 - Free-surface waves begin to form on a laminar...Ch. 8 - A viscous-shear pump is made from a stationary...Ch. 8 - The efficiency of the viscous-shear pump of Fig....Ch. 8 - An inventor proposes to make a viscous timer by...Ch. 8 - A continuous belt, passing upward through a...Ch. 8 - A wet paint film of uniform thickness, , is...Ch. 8 - Consider first water and then SAE 10W lubricating...Ch. 8 - Using Eq. A.3 in Appendix A for the viscosity of...Ch. 8 - Consider fully developed laminar flow in the...Ch. 8 - Carbon dioxide flows in a 50-mm-diameter pipe at a...Ch. 8 - Consider fully developed laminar flow in a...Ch. 8 - What is the largest diameter of pipeline that may...Ch. 8 - Consider fully developed laminar flow in the...Ch. 8 - Consider fully developed pressure-driven flow in a...Ch. 8 - In the laminar flow of an oil of viscosity 1 Pa_s,...Ch. 8 - In a laminar flow of 0.007 m3/s in a...Ch. 8 - Consider blood flow in an artery. Blood is...Ch. 8 - The classic Poiseuille flow (Eq. 8.12), is for...Ch. 8 - For pressure-driven, steady, fully developed...Ch. 8 - In a laminar flow in a 12-in.-diameter pipe the...Ch. 8 - A fluid of specific gravity 0.90 flows at a...Ch. 8 - In a food industry plant, two immiscible fluids...Ch. 8 - A horizontal pipe carries fluid in fully developed...Ch. 8 - Kerosene is pumped through a smooth tube with...Ch. 8 - In a flow of water in a 0.3-m-diameter pipe, the...Ch. 8 - A liquid drug, with the viscosity and density of...Ch. 8 - Laufer [5] measured the following data for mean...Ch. 8 - Equation 8.23 gives the power-law velocity profile...Ch. 8 - Consider fully developed laminar flow of water...Ch. 8 - Consider fully developed laminar flow in a...Ch. 8 - If the turbulent velocity profile in a pipe 0.6 m...Ch. 8 - Water flows in a horizontal constant-area pipe;...Ch. 8 - For a given volume flow rate and piping system,...Ch. 8 - Consider the pipe flow from the water tower of...Ch. 8 - At the inlet to a constant-diameter section of the...Ch. 8 - When oil (kinematic viscosity 1 104 m2/s,...Ch. 8 - When fluid of specific weight 50 lb/ft3 flows in a...Ch. 8 - If the head lost in 30-m-diameter of...Ch. 8 - Water flows at 10 L/min through a horizontal...Ch. 8 - Laufer [5] measured the following data for mean...Ch. 8 - Water is pumped at the rate of 0.075 m3/s from a...Ch. 8 - Just downstream from the nozzle tip the velocity...Ch. 8 - A horizontal nozzle having a cylindrical tip of 75...Ch. 8 - When 0.3 m3/s of water flows through a...Ch. 8 - Water flows through a 2-in.-diameter tube that...Ch. 8 - A 50-mm-diameter nozzle terminates a vertical...Ch. 8 - A 12-in.-diameter pipe leaves a reservoir of...Ch. 8 - A water pipe gradually changes from 6-in.-diameter...Ch. 8 - Air at standard conditions flows through a sudden...Ch. 8 - Water flows from a larger pipe, diameter D1 = 100...Ch. 8 - Flow through a sudden contraction is shown. The...Ch. 8 - A flow rate of 1.01/min of oil of specific gravity...Ch. 8 - Water flows in a smooth pipeline at a Reynolds...Ch. 8 - Air flows out of a clean room test chamber through...Ch. 8 - A conical diffuser is used to expand a pipe flow...Ch. 8 - By applying the basic equations to a control...Ch. 8 - Water at 45C enters a shower head through a...Ch. 8 - Water discharges to atmosphere from a large...Ch. 8 - A laboratory experiment is set up to measure...Ch. 8 - Oil with kinematic viscosity = 7.5 104 ft2/s...Ch. 8 - Water from a pump flows through a 9-in.-diameter...Ch. 8 - A 5-cm-diameter potable water line is to be run...Ch. 8 - A system for testing variable-output pumps...Ch. 8 - Two reservoirs are connected by three clean...Ch. 8 - Water, at volume flow rate Q = 0.75 ft3/s, is...Ch. 8 - When you drink a beverage with a straw, you need...Ch. 8 - What flow rate (gpm) will be produced in a...Ch. 8 - Gasoline flows in a long, underground pipeline at...Ch. 8 - An 18-in.-diameter new riveted steel pipeline 1000...Ch. 8 - What diameter of smooth masonry pipe is needed to...Ch. 8 - Water flows steadily in a 125-mm-diameter...Ch. 8 - Two galvanized iron pipes of diameter D are...Ch. 8 - A mining engineer plans to do hydraulic mining...Ch. 8 - The flow of water through a 150-mm-diameter...Ch. 8 - The fluid flowing has specific gravity 0.90; V75=6...Ch. 8 - Water is flowing. Calculate the direction and...Ch. 8 - Investigate the effect of tube roughness on flow...Ch. 8 - Investigate the effect of tube length on water...Ch. 8 - For the pipe flow into a reservoir of Example 8.5...Ch. 8 - Calculate the magnitude and direction of the...Ch. 8 - Experimental determination of local losses and...Ch. 8 - Water is flowing. Calculate the gage reading when...Ch. 8 - The siphon shown is fabricated from 50-mm-i.d....Ch. 8 - A large open water tank has a horizontal cast iron...Ch. 8 - A tank containing 30 m3 of kerosene is to be...Ch. 8 - A 90 screwed elbow is installed in a...Ch. 8 - Calculate the total tension in the bolts. Neglect...Ch. 8 - A horizontal 50-mm-diameter PVC pipeline leaves...Ch. 8 - You are watering your lawn with an old hose....Ch. 8 - Your boss claims that for pipe flow the flow rate,...Ch. 8 - A hydraulic press is powered by a remote...Ch. 8 - One-quarter of a cubic meter per second of liquid...Ch. 8 - Calculate the flow rate from this water tank if...Ch. 8 - A 6-ft-diameter pipeline 4 miles long between two...Ch. 8 - A new industrial plant requires a water flow rate...Ch. 8 - What diameter water pipe is required to handle...Ch. 8 - A pipe friction experiment for air consists of a...Ch. 8 - Oil has been flowing from a large tank on a hill...Ch. 8 - The pressure rise across a water pump is 35 psi...Ch. 8 - Cooling water is pumped from a reservoir to rock...Ch. 8 - You are asked to size a pump for installation in...Ch. 8 - Heavy crude oil (SG = 0.925 and = 1.0 104 m2/s)...Ch. 8 - Petroleum products are transported over long...Ch. 8 - The head versus capacity curve for a certain fan...Ch. 8 - A swimming pool has a partial-flow filtration...Ch. 8 - Water at 65C flows through a 75-mm-diameter...Ch. 8 - A 12 in. 6 in. Venturi meter is installed in a...Ch. 8 - A 1-in.-diameter nozzle is attached to a...Ch. 8 - A sharp-edged orifice with conventional pressure...Ch. 8 - A venturi meter with a 3-in.-diameter throat is...Ch. 8 - Air flows through a venturi meter with a...Ch. 8 - Water at 10C flows steadily through a venturi. The...Ch. 8 - Drinking straws are to be used to improve the air...Ch. 8 - In some western states, water for mining and...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
What is the evaluation order for the Boolean operators (AND, OR, NOT) in an SQL command? How can a query writer...
Modern Database Management
In the following exercises, write a program to carry out the task. The program should use variables for each of...
Introduction To Programming Using Visual Basic (11th Edition)
Write a program to answer questions like the following: Suppose the species Klingon ox has a population of 100 ...
Java: An Introduction to Problem Solving and Programming (8th Edition)
In chemical machining, should the etchant be applied by spraying or immersion?
Degarmo's Materials And Processes In Manufacturing
Find the no-load value of υo in the circuit shown.
Find υo when RL is 150 Ω.
How much power is dissipated in th...
Electric Circuits. (11th Edition)
What is the importance of modeling in engineering? How are the mathematical models for engineering processes pr...
HEAT+MASS TRANSFER:FUND.+APPL.
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- For a turbulent flow of a fluid in 0.6m diameter pipe, the velocity 0.15m from the wall 2.7m/s.Estimate the wall shear stress using the 1/7th expression for the velocity profile.arrow_forwardfluid kimematics mechanical, A crude oil having kinematic viscosity of 0.4×10-4 m2 per second is flowing through a pipe having diameter 0.3 m at the rate of 300 litres per sec. calculate the head lost due to friction for a length of 50 m of the pipe?arrow_forward(b) An oil with dynamic viscosity of 0.8 Pa. s and specific gravity of 0.9 is flowing through a horizontal pipe of 50 mm diameter. If the flow is a laminar flow, based on Table 1 and the setting given, determine: (i) flowrate of the oil; (ii) centerline velocity3; (iii) power required to maintain the flow; (iv) drag force on the pipe; and (v) velocity and shear stress at 10 mm from the wall. Table 1: Setting of Question Setting Pressure Different Pipe Length (m) (KN/m²) 3 2200 98arrow_forward
- The ethanol solution is pumped into a vessel 25 m above the reference point through a 25 mm diameter steel pipe at a rate of 8 m3 / hr. The pipe length is 35m and there are 2 elbows. Calculate the power requirements of the pump. The properties of the solution are density 975 kg / m3 and viscosity 4x 10-4 Pa s. a. Reynold number = ..... b. Energy Loss along the straight pipe = ..... J / kg. c. Energy Loss at curves = ..... J / kg. d. Total energy to overcome friction = ..... J / kg. e. Energy to raise water according to height = ..... J / kg. f. The theoretical energy requirement for the pump is kg ethanol / second = ..... J / kg. g. Actual pump power requirement = ..... watts.arrow_forwardConsider flow of an incompressible fluid of density ρ and viscosity µ through a long, horizontal round pipe of diameter D. V is the average speed remains constant down the pipe. For a very long pipe, the flow eventually becomes fully developed, which means that the velocity profile also remains uniform down the pipe. Because of frictional forces between the fluid and the pipe wall, there exists a shear stress τw on the inside pipe wall. We assume some constant average roughness height, along the inside wall of the pipe. In fact, the only parameter that is not constant down the length of pipe is the pressure, which must decrease (linearly) down the pipe in order to “push” the fluid through the pipe to overcome friction. Develop a nondimensional relationship between shear stress τw and the other parameters in the problem.arrow_forwardThe ethanol solution is pumped into a vessel 25 m above the reference point through a 25 mm diameter steel pipe at a rate of 8 m3/hour. The length of the pipe is 35m and there are 2 elbows. Calculate the pump power requirement. The properties of the solution are density 975 kg/m3 and viscosity 4x 10-4 Pa s. a. Reynolds number = b. Energy Loss along a straight pipe = J/kg. c. Energy Loss in turns = J/kg. d. Total energy to overcome friction = J/kg. e. Energy to raise water to height = J/kg. f. Theoretical energy requirement of the pump kg ethanol/second = J/kg. g. Actual pump power requirement = watt.arrow_forward
- 4. Fluid flows axially in the annular space between a cylinder and a concentric rod. The radius of the rod is r; and that of the cylinder is ro. Fluid motion in the annular space is driven by an axial pressure gradient dp/dz. The cylinder is maintained at uniform temperature To. Assume incompressible laminar axisymmetric flow and neglect gravity and end effects. Show that the axial velocity is given by: _1-(r; /r, )? In(r, / r; ) r dp |(r/r,)? Au dz - In(r / r, ) – 1arrow_forwarda 5-mm-diamter capillary tube is used as a viscometer for oils. When the flow rate is 0.071 m3/h, the measured pressure drop per unit length is 375 kPa/m. Estimate the viscosity of the fluid. Is the flow laminar? Can you also estimate the density of the fluid?arrow_forwardGlycerine (relative density 1.26, dynamic viscosity 0.9 Pa · s) is pumped at 20 L· s through a straight, 100 mm diameter pipe, 45 m long, inclined at 15°C to the horizontal. The gauge pressure at the lower, inlet, end of the pipe is 590 kPa. Verify that the flow is laminar and, neglecting end effects, calculate the pressure at the outlet end of the pipe and the average shear stress at the wall.arrow_forward
- A liquid of viscosity 1.74 x 103 Ns/m² is flowing through a horizontal capillary tube of diameter 0.5 mm. The flow in the tube is steady, incompressible, and fully developed laminar flow. The pressure drop across two locations spaced 1 m apart in the tube is 1.0 MPa. The flow rate in the tube mm /s.arrow_forwardQ.6 The velocity profile in fully developed laminar flow in a pipe of diameter Dis given by u=u (1-4r2/D²), whereris the radial distance from the center. If the viscosity of the fluid is u, the pressure drop across a length L of the pipe is %3Darrow_forwardAt 60°C the surface tension of mercury is 0.47 N/m. What capillary height changes (mm) will occur in this fluid when it is in contact with air in a glass tube of radius 0.25 mm? Use wetting angle = 130° and unit weight = 132,300 N/m3arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Properties of Fluids: The Basics; Author: Swanson Flo;https://www.youtube.com/watch?v=TgD3nEO1iCA;License: Standard YouTube License, CC-BY
Fluid Mechanics-Lecture-1_Introduction & Basic Concepts; Author: OOkul - UPSC & SSC Exams;https://www.youtube.com/watch?v=6bZodDnmE0o;License: Standard Youtube License