Fox And Mcdonald's Introduction To Fluid Mechanics
9th Edition
ISBN: 9781118921876
Author: Pritchard, Philip J.; Leylegian, John C.; Bhaskaran, Rajesh
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 8, Problem 37P
Carbon dioxide flows in a 50-mm-diameter pipe at a velocity of 1.5m/s, temperature 66°C, and absolute pressure 50 kPa. Is the flow laminar or turbulent? If the temperature is lowered to 30°C, what is the flow regime? If the pressure is reduced to 20 kPa, what is the flow regime? Explain the differences in answers in terms of the physical
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
answer first question
Water at a temperature of 80oC (coefficient of viscosity is 0.357 centipoise) is flowing at a speed of 200 cm/s through a pipe of radius 2 mm. What is the nature of flow? What is the maximum velocity for it to remain laminar? What is the minimum velocity that will make the flow turbulent?
Heated air at 1 atm and 35 °C is to be transported in a 150 m long circular plastic duct at a rate
of 0.35 m/s. The diameter D of the plastic tube is 0.3 m. Determine the pressure drop and the
head loss in the pipe. The density and kinematic viscosity of air are 1.145 kg/m3 and 1.655 x 10
5 m²/s.
0.35 m³/s
D
air
150 m
Chapter 8 Solutions
Fox And Mcdonald's Introduction To Fluid Mechanics
Ch. 8 - Consider incompressible flow in a circular...Ch. 8 - What is the maximum flow rate of air that may...Ch. 8 - For flow in circular tubes, transition to...Ch. 8 - An incompressible fluid flows between two infinite...Ch. 8 - Oil is confined in a 4-in.-diameter cylinder by a...Ch. 8 - Viscous oil flows steadily between parallel...Ch. 8 - Calculate for the flow in this two-dimensional...Ch. 8 - The velocity profile in a two-dimensional open...Ch. 8 - A large mass is supported by a piston of diameter...Ch. 8 - A hydraulic jack supports a load of 9000 kg. The...
Ch. 8 - The basic component of a pressure gage tester...Ch. 8 - When a horizontal laminar flow occurs between two...Ch. 8 - In a laminar flow of water of 0:007 m3/s between...Ch. 8 - Consider the simple power-law model for a...Ch. 8 - A sealed journal bearing is formed from concentric...Ch. 8 - Using the profile of Problem 8.15, show that the...Ch. 8 - In a laminar flow between parallel plates spaced...Ch. 8 - A fluid of specific gravity 0.90 flows at a...Ch. 8 - Two immiscible fluids are contained between...Ch. 8 - The record-read head for a computer disk-drive...Ch. 8 - Consider steady, incompressible, and fully...Ch. 8 - In a flow of air between parallel plates spaced...Ch. 8 - Consider fully developed flow between parallel...Ch. 8 - Free-surface waves begin to form on a laminar...Ch. 8 - A viscous-shear pump is made from a stationary...Ch. 8 - The efficiency of the viscous-shear pump of Fig....Ch. 8 - An inventor proposes to make a viscous timer by...Ch. 8 - A continuous belt, passing upward through a...Ch. 8 - A wet paint film of uniform thickness, , is...Ch. 8 - Consider first water and then SAE 10W lubricating...Ch. 8 - Using Eq. A.3 in Appendix A for the viscosity of...Ch. 8 - Consider fully developed laminar flow in the...Ch. 8 - Carbon dioxide flows in a 50-mm-diameter pipe at a...Ch. 8 - Consider fully developed laminar flow in a...Ch. 8 - What is the largest diameter of pipeline that may...Ch. 8 - Consider fully developed laminar flow in the...Ch. 8 - Consider fully developed pressure-driven flow in a...Ch. 8 - In the laminar flow of an oil of viscosity 1 Pa_s,...Ch. 8 - In a laminar flow of 0.007 m3/s in a...Ch. 8 - Consider blood flow in an artery. Blood is...Ch. 8 - The classic Poiseuille flow (Eq. 8.12), is for...Ch. 8 - For pressure-driven, steady, fully developed...Ch. 8 - In a laminar flow in a 12-in.-diameter pipe the...Ch. 8 - A fluid of specific gravity 0.90 flows at a...Ch. 8 - In a food industry plant, two immiscible fluids...Ch. 8 - A horizontal pipe carries fluid in fully developed...Ch. 8 - Kerosene is pumped through a smooth tube with...Ch. 8 - In a flow of water in a 0.3-m-diameter pipe, the...Ch. 8 - A liquid drug, with the viscosity and density of...Ch. 8 - Laufer [5] measured the following data for mean...Ch. 8 - Equation 8.23 gives the power-law velocity profile...Ch. 8 - Consider fully developed laminar flow of water...Ch. 8 - Consider fully developed laminar flow in a...Ch. 8 - If the turbulent velocity profile in a pipe 0.6 m...Ch. 8 - Water flows in a horizontal constant-area pipe;...Ch. 8 - For a given volume flow rate and piping system,...Ch. 8 - Consider the pipe flow from the water tower of...Ch. 8 - At the inlet to a constant-diameter section of the...Ch. 8 - When oil (kinematic viscosity 1 104 m2/s,...Ch. 8 - When fluid of specific weight 50 lb/ft3 flows in a...Ch. 8 - If the head lost in 30-m-diameter of...Ch. 8 - Water flows at 10 L/min through a horizontal...Ch. 8 - Laufer [5] measured the following data for mean...Ch. 8 - Water is pumped at the rate of 0.075 m3/s from a...Ch. 8 - Just downstream from the nozzle tip the velocity...Ch. 8 - A horizontal nozzle having a cylindrical tip of 75...Ch. 8 - When 0.3 m3/s of water flows through a...Ch. 8 - Water flows through a 2-in.-diameter tube that...Ch. 8 - A 50-mm-diameter nozzle terminates a vertical...Ch. 8 - A 12-in.-diameter pipe leaves a reservoir of...Ch. 8 - A water pipe gradually changes from 6-in.-diameter...Ch. 8 - Air at standard conditions flows through a sudden...Ch. 8 - Water flows from a larger pipe, diameter D1 = 100...Ch. 8 - Flow through a sudden contraction is shown. The...Ch. 8 - A flow rate of 1.01/min of oil of specific gravity...Ch. 8 - Water flows in a smooth pipeline at a Reynolds...Ch. 8 - Air flows out of a clean room test chamber through...Ch. 8 - A conical diffuser is used to expand a pipe flow...Ch. 8 - By applying the basic equations to a control...Ch. 8 - Water at 45C enters a shower head through a...Ch. 8 - Water discharges to atmosphere from a large...Ch. 8 - A laboratory experiment is set up to measure...Ch. 8 - Oil with kinematic viscosity = 7.5 104 ft2/s...Ch. 8 - Water from a pump flows through a 9-in.-diameter...Ch. 8 - A 5-cm-diameter potable water line is to be run...Ch. 8 - A system for testing variable-output pumps...Ch. 8 - Two reservoirs are connected by three clean...Ch. 8 - Water, at volume flow rate Q = 0.75 ft3/s, is...Ch. 8 - When you drink a beverage with a straw, you need...Ch. 8 - What flow rate (gpm) will be produced in a...Ch. 8 - Gasoline flows in a long, underground pipeline at...Ch. 8 - An 18-in.-diameter new riveted steel pipeline 1000...Ch. 8 - What diameter of smooth masonry pipe is needed to...Ch. 8 - Water flows steadily in a 125-mm-diameter...Ch. 8 - Two galvanized iron pipes of diameter D are...Ch. 8 - A mining engineer plans to do hydraulic mining...Ch. 8 - The flow of water through a 150-mm-diameter...Ch. 8 - The fluid flowing has specific gravity 0.90; V75=6...Ch. 8 - Water is flowing. Calculate the direction and...Ch. 8 - Investigate the effect of tube roughness on flow...Ch. 8 - Investigate the effect of tube length on water...Ch. 8 - For the pipe flow into a reservoir of Example 8.5...Ch. 8 - Calculate the magnitude and direction of the...Ch. 8 - Experimental determination of local losses and...Ch. 8 - Water is flowing. Calculate the gage reading when...Ch. 8 - The siphon shown is fabricated from 50-mm-i.d....Ch. 8 - A large open water tank has a horizontal cast iron...Ch. 8 - A tank containing 30 m3 of kerosene is to be...Ch. 8 - A 90 screwed elbow is installed in a...Ch. 8 - Calculate the total tension in the bolts. Neglect...Ch. 8 - A horizontal 50-mm-diameter PVC pipeline leaves...Ch. 8 - You are watering your lawn with an old hose....Ch. 8 - Your boss claims that for pipe flow the flow rate,...Ch. 8 - A hydraulic press is powered by a remote...Ch. 8 - One-quarter of a cubic meter per second of liquid...Ch. 8 - Calculate the flow rate from this water tank if...Ch. 8 - A 6-ft-diameter pipeline 4 miles long between two...Ch. 8 - A new industrial plant requires a water flow rate...Ch. 8 - What diameter water pipe is required to handle...Ch. 8 - A pipe friction experiment for air consists of a...Ch. 8 - Oil has been flowing from a large tank on a hill...Ch. 8 - The pressure rise across a water pump is 35 psi...Ch. 8 - Cooling water is pumped from a reservoir to rock...Ch. 8 - You are asked to size a pump for installation in...Ch. 8 - Heavy crude oil (SG = 0.925 and = 1.0 104 m2/s)...Ch. 8 - Petroleum products are transported over long...Ch. 8 - The head versus capacity curve for a certain fan...Ch. 8 - A swimming pool has a partial-flow filtration...Ch. 8 - Water at 65C flows through a 75-mm-diameter...Ch. 8 - A 12 in. 6 in. Venturi meter is installed in a...Ch. 8 - A 1-in.-diameter nozzle is attached to a...Ch. 8 - A sharp-edged orifice with conventional pressure...Ch. 8 - A venturi meter with a 3-in.-diameter throat is...Ch. 8 - Air flows through a venturi meter with a...Ch. 8 - Water at 10C flows steadily through a venturi. The...Ch. 8 - Drinking straws are to be used to improve the air...Ch. 8 - In some western states, water for mining and...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
Write a simple assignment statement with one arithmetic operator in some language you know. For each component ...
Concepts Of Programming Languages
2-1 List the five types of measurements that form the
basis of traditional ptane surveying-
Elementary Surveying: An Introduction To Geomatics (15th Edition)
Determine the slope of the simply supported beam at A. E = 200 GPa and I = 39.9(106) m4. F126
Mechanics of Materials (10th Edition)
On the basis of a computer system with which you are familiar, identify two units of application software and t...
Computer Science: An Overview (13th Edition) (What's New in Computer Science)
What is a Boolean function?
Starting Out with Python (4th Edition)
What types of design features favor manufacture as a joined assembly?
Degarmo's Materials And Processes In Manufacturing
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Air having density p = 0.981 kg/m³ is flowing in a wind tunnel. A differential manometer connected to a pitot tube is used to measure the dynamic pressure of the air at the pitot tube location. The liquid in the manometer is oil having a specific gravity of 0.826, and the manometer reading is 76.2 mm. The wind tunnel is on the CU campus in Denver where g = 9.796 m/s?. a) Find the dynamic pressure of the air (answer: 615.8 Pa). b) Find the speed of the air at the pitot tube location (answer: 35.4 m/s). Air p = 0.981 kg/m³ h = 76.2 mm Oil, SG = 0.826arrow_forwardHelium at 20° C and low pressure flows around a thin plate 1 m long and 2 m wide. You want the frictional resistance of the plate to be 0.5 N. What is the appropriate pressure for helium if V=35 m / s?arrow_forwardHelium at 25°C and 110 kPa (absolute) flows into a copper tube (1-1/4-standard, type M) that is 10 m long. Is the flow fully developed at tube end if the helium mass flow rate is 0.02 kg/s? Ethyl alcohol flows into a 6 cm ID pipe through a well-rounded entrance. After 20 cm of pipe length, measurements taken in the pipe show that the flow is fully developed. Determine the volume flow rate in the pipe, assuming laminar flow exists.arrow_forward
- Water is moving forward through parallel plates at standard conditions. The bottom plate is fixed, and upper plate moves when a force is applied. What force value is required to make the upper plate move if the length of both plates, mean velocity. effective area, and vertical distance between the two plates are 5.08 cm, 3 f/s, 200 in and 0.2 in respectively? Determine the effective diameter? The velocity profile is given by U(x.y) - Umean cos(x2 + 2y) -e Attacharrow_forwardThe 100-mm diameter pipe is connected by a nozzle to a large reservoir of air that is at a temperature of 20 °C and absolute pressure of 500 kPa The backpressure causes M,> 1, and the flow is choked at the exit, section 2, when L=5 m. Assume a constant friction factor of 0.0085 throughout the pipe, Gas constant for air is R-286 9 J/kg-K) and its specific heat ratio is k-140 (Figure 1) Figure 100mm < 1 of 1 1. T Part A Determine the mass flow through the pipe Express your answer using three significant figures. Submit VAE 1 vec Provide Feedback Request Answer D kg/sarrow_forwardA liquid of viscosity of 0.03 N s m2 is flowing under laminar conditions through a convergent, tapered tube for which the tube diameter changes linearly with length. The tube length is 0.50 m and its diameter varies from 0.01 m at the entrance to 0.005 m at the exit. Determine the pressure drop which is required to maintain the flow at a rate of 10-7 m3 s-1. The effect of kinetic energy due to the change in velocity in the tube may be neglected. Show the derivation of the final eauation used in solving this problem.arrow_forward
- Oil is to flow through a pipe at 80°C, and for experimental purposes, the oil flow must be hydrodynamically and thermally fully developed laminar flow. If the pipe diameter is set at 2.5 cm, what is the minimum pipe length needed to ensure the flow conditions are met and the required pumping power to overcome the pressure loss in the pipe?arrow_forwardQI/An electronic device is cooled by water flowing through capillary holes drilled in the casing. The temperature of the device casing is constant at 353 K. The capillary holes are 0.3m long and 2.54x10m in diameter. If water enters at a temperature of 333 K and flows at a velocity of 0.2 m/s, calculate the outlet temperature of the water.arrow_forwardAt a speed of 0.2 m/s, light oil with a density of 880kg/m and a viscosity of 2.1cP is pumped from a huge oil tanker to a power plant's storage tank. The discharge point is 50m above the liquid level in the tanker, at the top of the storage tank. The pipeline is a 150mm smooth pipe with six typical 90° elbows and two gate valves that is 200 meters long (fully open). The atmosphere is vented from both the oil tanker and the storage tank. a. Calculate the pressure drop in J/kg along the pipeline. b. Calculate the pumping power (in kW) if the pump-motor set has a 65 percent efficiency.arrow_forward
- Thermo-Fluidarrow_forwardThe ethanol solution is pumped into a vessel 25 m above the reference point through a 25 mm diameter steel pipe at a rate of 10 m3 / hr. The pipe length is 35m and there are 2 elbows. Calculate the power requirements of the pump. The properties of the solution are density 975 kg / m3 and viscosity 4x 10-4 Pa s. a. Reynold number = Answer b. Loss of Energy along the straight pipe = Answer J / kg. c. Losing Energy at curves = Answer J / kg. d. Total energy to overcome friction = Answer J / kg. e. Energy to increase water according to height = Answer J / kg. f. The theoretical energy requirement of the pump ethanol / second = Answer J / kg. g. Actual pump power requirement = Answer watt.arrow_forwardWater flows in a 3.5-cm-diameter pipe so that the Reynolds number based on diameter is 2000 (laminar flow is assumed). The average bulk temperature is 10°C. Calculate the maximum water velocity in the tube in m/s. (Recall that um = 0.5ug)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Properties of Fluids: The Basics; Author: Swanson Flo;https://www.youtube.com/watch?v=TgD3nEO1iCA;License: Standard YouTube License, CC-BY
Fluid Mechanics-Lecture-1_Introduction & Basic Concepts; Author: OOkul - UPSC & SSC Exams;https://www.youtube.com/watch?v=6bZodDnmE0o;License: Standard Youtube License