Fox And Mcdonald's Introduction To Fluid Mechanics
9th Edition
ISBN: 9781118921876
Author: Pritchard, Philip J.; Leylegian, John C.; Bhaskaran, Rajesh
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 8, Problem 63P
At the inlet to a constant-diameter section of the Alaskan pipeline, the pressure is 8.5 MPa and the elevation is 45 m; at the outlet the elevation is 115 m. The head loss in this section of pipeline is 6.9 kJ/kg. Calculate the outlet pressure.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A hydroelectric plant is supplied with water by a 10 km duct leading
from a dam to the turbines. The duct is made of concrete and is 2 m in
diameter. The duct inlet at the dam is 10 m below the water surface
and 60 m above the turbine entry. The turbine discharges to the
atmosphere. What flow of water at 20 °C can be expected to the
turbine? How much power would the turbine develop for this flow?
Pressure at the turbine inlet is 120 kN/m?.
For this siphon the elevations at A, B, C, and D are: 30 m, 32 m, 27 m, and 26 m, respectively. The head loss between the inlet and point B is three-quarters of the velocity head, and the head loss in the pipe itself between point B and the end of the pipe is one-quarter of the velocity head. For these conditions, what is the discharge and what is the pressure at point B? The pipe diameter 25 cm.
The water temperature in the tank is 60 °C and the pump has the capacity of 20 ton/hour. Pump is 2m below the bottom of the tank. Diameter of the pipe is 20 cm and the total length of the pipe is 10 m. The pipe is smooth (roughness of the pipe is zero). In the suction line, there are one sharp exit (Kı=0.6), one valve (KL = 17.5) and one 90° elbow (K1=0.3). The required NPSH is given as NPSHrequired=4+3.1050? (V unit in this equation is mº/s). What can be the minimum height of the water in tank (h) so that the pump can work without the cavitation (Patm=101.3 kPa, a=1.05)
Chapter 8 Solutions
Fox And Mcdonald's Introduction To Fluid Mechanics
Ch. 8 - Consider incompressible flow in a circular...Ch. 8 - What is the maximum flow rate of air that may...Ch. 8 - For flow in circular tubes, transition to...Ch. 8 - An incompressible fluid flows between two infinite...Ch. 8 - Oil is confined in a 4-in.-diameter cylinder by a...Ch. 8 - Viscous oil flows steadily between parallel...Ch. 8 - Calculate for the flow in this two-dimensional...Ch. 8 - The velocity profile in a two-dimensional open...Ch. 8 - A large mass is supported by a piston of diameter...Ch. 8 - A hydraulic jack supports a load of 9000 kg. The...
Ch. 8 - The basic component of a pressure gage tester...Ch. 8 - When a horizontal laminar flow occurs between two...Ch. 8 - In a laminar flow of water of 0:007 m3/s between...Ch. 8 - Consider the simple power-law model for a...Ch. 8 - A sealed journal bearing is formed from concentric...Ch. 8 - Using the profile of Problem 8.15, show that the...Ch. 8 - In a laminar flow between parallel plates spaced...Ch. 8 - A fluid of specific gravity 0.90 flows at a...Ch. 8 - Two immiscible fluids are contained between...Ch. 8 - The record-read head for a computer disk-drive...Ch. 8 - Consider steady, incompressible, and fully...Ch. 8 - In a flow of air between parallel plates spaced...Ch. 8 - Consider fully developed flow between parallel...Ch. 8 - Free-surface waves begin to form on a laminar...Ch. 8 - A viscous-shear pump is made from a stationary...Ch. 8 - The efficiency of the viscous-shear pump of Fig....Ch. 8 - An inventor proposes to make a viscous timer by...Ch. 8 - A continuous belt, passing upward through a...Ch. 8 - A wet paint film of uniform thickness, , is...Ch. 8 - Consider first water and then SAE 10W lubricating...Ch. 8 - Using Eq. A.3 in Appendix A for the viscosity of...Ch. 8 - Consider fully developed laminar flow in the...Ch. 8 - Carbon dioxide flows in a 50-mm-diameter pipe at a...Ch. 8 - Consider fully developed laminar flow in a...Ch. 8 - What is the largest diameter of pipeline that may...Ch. 8 - Consider fully developed laminar flow in the...Ch. 8 - Consider fully developed pressure-driven flow in a...Ch. 8 - In the laminar flow of an oil of viscosity 1 Pa_s,...Ch. 8 - In a laminar flow of 0.007 m3/s in a...Ch. 8 - Consider blood flow in an artery. Blood is...Ch. 8 - The classic Poiseuille flow (Eq. 8.12), is for...Ch. 8 - For pressure-driven, steady, fully developed...Ch. 8 - In a laminar flow in a 12-in.-diameter pipe the...Ch. 8 - A fluid of specific gravity 0.90 flows at a...Ch. 8 - In a food industry plant, two immiscible fluids...Ch. 8 - A horizontal pipe carries fluid in fully developed...Ch. 8 - Kerosene is pumped through a smooth tube with...Ch. 8 - In a flow of water in a 0.3-m-diameter pipe, the...Ch. 8 - A liquid drug, with the viscosity and density of...Ch. 8 - Laufer [5] measured the following data for mean...Ch. 8 - Equation 8.23 gives the power-law velocity profile...Ch. 8 - Consider fully developed laminar flow of water...Ch. 8 - Consider fully developed laminar flow in a...Ch. 8 - If the turbulent velocity profile in a pipe 0.6 m...Ch. 8 - Water flows in a horizontal constant-area pipe;...Ch. 8 - For a given volume flow rate and piping system,...Ch. 8 - Consider the pipe flow from the water tower of...Ch. 8 - At the inlet to a constant-diameter section of the...Ch. 8 - When oil (kinematic viscosity 1 104 m2/s,...Ch. 8 - When fluid of specific weight 50 lb/ft3 flows in a...Ch. 8 - If the head lost in 30-m-diameter of...Ch. 8 - Water flows at 10 L/min through a horizontal...Ch. 8 - Laufer [5] measured the following data for mean...Ch. 8 - Water is pumped at the rate of 0.075 m3/s from a...Ch. 8 - Just downstream from the nozzle tip the velocity...Ch. 8 - A horizontal nozzle having a cylindrical tip of 75...Ch. 8 - When 0.3 m3/s of water flows through a...Ch. 8 - Water flows through a 2-in.-diameter tube that...Ch. 8 - A 50-mm-diameter nozzle terminates a vertical...Ch. 8 - A 12-in.-diameter pipe leaves a reservoir of...Ch. 8 - A water pipe gradually changes from 6-in.-diameter...Ch. 8 - Air at standard conditions flows through a sudden...Ch. 8 - Water flows from a larger pipe, diameter D1 = 100...Ch. 8 - Flow through a sudden contraction is shown. The...Ch. 8 - A flow rate of 1.01/min of oil of specific gravity...Ch. 8 - Water flows in a smooth pipeline at a Reynolds...Ch. 8 - Air flows out of a clean room test chamber through...Ch. 8 - A conical diffuser is used to expand a pipe flow...Ch. 8 - By applying the basic equations to a control...Ch. 8 - Water at 45C enters a shower head through a...Ch. 8 - Water discharges to atmosphere from a large...Ch. 8 - A laboratory experiment is set up to measure...Ch. 8 - Oil with kinematic viscosity = 7.5 104 ft2/s...Ch. 8 - Water from a pump flows through a 9-in.-diameter...Ch. 8 - A 5-cm-diameter potable water line is to be run...Ch. 8 - A system for testing variable-output pumps...Ch. 8 - Two reservoirs are connected by three clean...Ch. 8 - Water, at volume flow rate Q = 0.75 ft3/s, is...Ch. 8 - When you drink a beverage with a straw, you need...Ch. 8 - What flow rate (gpm) will be produced in a...Ch. 8 - Gasoline flows in a long, underground pipeline at...Ch. 8 - An 18-in.-diameter new riveted steel pipeline 1000...Ch. 8 - What diameter of smooth masonry pipe is needed to...Ch. 8 - Water flows steadily in a 125-mm-diameter...Ch. 8 - Two galvanized iron pipes of diameter D are...Ch. 8 - A mining engineer plans to do hydraulic mining...Ch. 8 - The flow of water through a 150-mm-diameter...Ch. 8 - The fluid flowing has specific gravity 0.90; V75=6...Ch. 8 - Water is flowing. Calculate the direction and...Ch. 8 - Investigate the effect of tube roughness on flow...Ch. 8 - Investigate the effect of tube length on water...Ch. 8 - For the pipe flow into a reservoir of Example 8.5...Ch. 8 - Calculate the magnitude and direction of the...Ch. 8 - Experimental determination of local losses and...Ch. 8 - Water is flowing. Calculate the gage reading when...Ch. 8 - The siphon shown is fabricated from 50-mm-i.d....Ch. 8 - A large open water tank has a horizontal cast iron...Ch. 8 - A tank containing 30 m3 of kerosene is to be...Ch. 8 - A 90 screwed elbow is installed in a...Ch. 8 - Calculate the total tension in the bolts. Neglect...Ch. 8 - A horizontal 50-mm-diameter PVC pipeline leaves...Ch. 8 - You are watering your lawn with an old hose....Ch. 8 - Your boss claims that for pipe flow the flow rate,...Ch. 8 - A hydraulic press is powered by a remote...Ch. 8 - One-quarter of a cubic meter per second of liquid...Ch. 8 - Calculate the flow rate from this water tank if...Ch. 8 - A 6-ft-diameter pipeline 4 miles long between two...Ch. 8 - A new industrial plant requires a water flow rate...Ch. 8 - What diameter water pipe is required to handle...Ch. 8 - A pipe friction experiment for air consists of a...Ch. 8 - Oil has been flowing from a large tank on a hill...Ch. 8 - The pressure rise across a water pump is 35 psi...Ch. 8 - Cooling water is pumped from a reservoir to rock...Ch. 8 - You are asked to size a pump for installation in...Ch. 8 - Heavy crude oil (SG = 0.925 and = 1.0 104 m2/s)...Ch. 8 - Petroleum products are transported over long...Ch. 8 - The head versus capacity curve for a certain fan...Ch. 8 - A swimming pool has a partial-flow filtration...Ch. 8 - Water at 65C flows through a 75-mm-diameter...Ch. 8 - A 12 in. 6 in. Venturi meter is installed in a...Ch. 8 - A 1-in.-diameter nozzle is attached to a...Ch. 8 - A sharp-edged orifice with conventional pressure...Ch. 8 - A venturi meter with a 3-in.-diameter throat is...Ch. 8 - Air flows through a venturi meter with a...Ch. 8 - Water at 10C flows steadily through a venturi. The...Ch. 8 - Drinking straws are to be used to improve the air...Ch. 8 - In some western states, water for mining and...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
Design an algorithm that, given a list of five or more numbers, finds the five smallest and five largest number...
Computer Science: An Overview (13th Edition) (What's New in Computer Science)
Write an SQL statement to display the last name, first name, and email of any owners of cats. Use a subquery.
Database Concepts (8th Edition)
True or False: A class may only implement one interface.
Starting Out with Java: From Control Structures through Data Structures (4th Edition) (What's New in Computer Science)
Write statements that create the following arrays: a) A 100-element int array referenced by the variable employ...
Starting Out with Java: From Control Structures through Objects (7th Edition) (What's New in Computer Science)
What are the design issues for character string types?
Concepts Of Programming Languages
For the circuit shown, find (a) the voltage υ, (b) the power delivered to the circuit by the current source, an...
Electric Circuits. (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- B10arrow_forwardA pump is being used to transport a liquid food product (density p=1000kg/m^3, viscosity 0.001 Pa s) from holding tank to filling a machine at a mass flow rate of 2 kg/s. The liquid level in the holding tank is 10 m above the pump, and the filling machine is 5 m above the pump. There is 100 m of 2-in nominal diamter sanitary pipe between the holding tank and the filling machine, wiht one open globe valve and four regular 90° flanged elbows in the system. Within the system, there is a heat exchange which causes 100 kPa of pressure drop due to friction. The holding tank is open to atmosphere, and filling machine is running at a pressure of 1.5 atm. The diamter of the filling machine pipe is 3cm. A: What is the volume flow rate of the system? B: What is the diamete of the pipe? C: What is the average velocity inside the pipe? D: What is the reynolds number of the flow in the pipe? E: What is the flowing type?arrow_forwardAir flows steadily from a large tank, through a hose of diameter D = 0.03 m and exits to the atmosphere from a nozzle of diameter d = 0.01 as shown. The pressure in the tank remains constant at 3.0 kPa and the atmospheric conditions are standard absolute temperature and pressure. Determine the flowrate and the pressure in the hose.arrow_forward
- In the depot in the figure, 1200 kg / m3 of oil is compressed with air. Calculate the flow rate of the oil flowing through the d diameter pipe. (The cross-sectional area of the container containing the oil is much larger than the cross-sectional area of the d diameter pipe.) (H1 = 2m, h2 = 30 cm, ød = 6 cm PHa = 13600 kg / m3) Atmosfer Hava ha hi Civa (Hg) |||| | ||| ||arrow_forwardThe inlet pressure to a piping system is 440 kPa. The inlet pipe diameter is 0.6 m. What is the velocity of the flow of water and discharge at the inlet?arrow_forwardProvide a detailed solutionarrow_forward
- Air (1.23 kg/m³) flows past an object in a 2-m-diameter pipe and exits as a free jet as shown in the figure below. The velocity and pressure upstream are uniform at V = 13 m/s and p = 60 N/m², respectively. At the pipe exit the velocity is non-uniform as indicated. The shear stress along the pipe wall is negligible. (a) Determine the head loss associated with a fluid streamline as it flows over a solid body from the upstream region of uniform velocity to the wake region at the exit plane of the pipe. (b) Determine the force that the air puts on the object. Assume V₁ = 16.0 m/s, V₂ = 4 m/s. 2-m-dia. Air Wake 1-m dia. + Exit -V₂ -V₁₂₁ Head loss is associated with changes in static pressure head, dynamic pressure head, elevation and mechanical head in a flow.arrow_forwardA pipe with unequal ends is used to transport a fluid. The pipe diameter at the larger end is 0.67 cm and the other end is 0.29 cm. The larger and smaller ends are located 9 m and 3 m, respectively, from the datum line. If the flow at the 9 m datum line is 1.48 m/s and the pressure is 5156 kN/m2, compute for the pressure, in kPa, at the smaller end. Express your answer in 3 decimal places.arrow_forwardVvarrow_forward
- At the gasoline transfer facility (ρᵣₑₗ=0,75) from the pond of storage to consumption, you want to install a pump to circulate a flow of 40(lt/s). The 400m long pipe is cast iron 150mm in diameter and consists of a check valve, a gate valve and 2 commercial medium radius elbows. The consumption tank is pressurized to 2,9 (kgf/cm²) gauge pressure. Decide the drive power of the pump in KW if its performance is 70%. •Additional data, pressure drop factors: •Retention valve Kᵣ = 1,5 •Gate valve open Kᵥ = 0,21 •Medium Radius Commercial Elbow Kc = 0,75 for each cubit •Storage pond outlet sharp angles Kₛ = 0,5 •Entrance to consumption pond Kₑ = 1 •Friction factor in pipes f = 0.026arrow_forwardA 230-m-long pipeline delivers 20◦C water to a storage reservoir located downstream. The pipeline is galva-nized with an average roughness height of 0.2 mm. An axial pump is used to pressurize upstream water. Thewater surface in the reservoir is located 18 m above the centerline of the pump. The pump discharges waterat an absolute pressure of 400 kPa and a volume flow rate of 50 L/s. Calculate a diameter of pipe requiredto achieve such an operating condition. If needed, use the Moody diagram on the last page, or one can solvethe Colebrook equation using, for example, Matlab.arrow_forwardQ#2 Air is flowing through a venture-meter whose diameter is 2.6 in at the entrance part (location 1) and 1.8 in at the throat (location 2). The gage pressure is measured to be 12.2 psia at the entrance and 11.8 psia at the throat. Neglecting frictional effects, show that the volume flow rate can be expressed as 2(P - P2) v = Ar p(1 – AIA}) and determine the flow rate of air. Take the air density to be 0.075 lbm/ft3. 12.2 psia 11.8 psia Air 2.6 in 1.8 inarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
8.01x - Lect 27 - Fluid Mechanics, Hydrostatics, Pascal's Principle, Atmosph. Pressure; Author: Lectures by Walter Lewin. They will make you ♥ Physics.;https://www.youtube.com/watch?v=O_HQklhIlwQ;License: Standard YouTube License, CC-BY
Dynamics of Fluid Flow - Introduction; Author: Tutorials Point (India) Ltd.;https://www.youtube.com/watch?v=djx9jlkYAt4;License: Standard Youtube License