Starting with the symmetrized integrals as in Problem 34, make the substitutions α = 2 π p / h (where p is the new variable, h is a constant), f ( x ) = ψ ( x ) , g ( α ) = h / 2 π ϕ ( p ) ; show that then ψ ( x ) = 1 h ∫ − ∞ ∞ ϕ ( p ) e 2 π i p x / h d p , ϕ ( p ) = 1 h ∫ − ∞ ∞ ψ ( x ) e − 2 π i p x / h d x , ∫ − ∞ ∞ | ψ ( x ) | 2 d x = ∫ − ∞ ∞ | ϕ ( p ) | 2 d p . This notation is often used in quantum mechanics.
Starting with the symmetrized integrals as in Problem 34, make the substitutions α = 2 π p / h (where p is the new variable, h is a constant), f ( x ) = ψ ( x ) , g ( α ) = h / 2 π ϕ ( p ) ; show that then ψ ( x ) = 1 h ∫ − ∞ ∞ ϕ ( p ) e 2 π i p x / h d p , ϕ ( p ) = 1 h ∫ − ∞ ∞ ψ ( x ) e − 2 π i p x / h d x , ∫ − ∞ ∞ | ψ ( x ) | 2 d x = ∫ − ∞ ∞ | ϕ ( p ) | 2 d p . This notation is often used in quantum mechanics.
Starting with the symmetrized integrals as in Problem 34, make the substitutions
α
=
2
π
p
/
h
(where
p
is the new variable,
h
is a constant),
f
(
x
)
=
ψ
(
x
)
,
g
(
α
)
=
h
/
2
π
ϕ
(
p
)
;
show that then
ψ
(
x
)
=
1
h
∫
−
∞
∞
ϕ
(
p
)
e
2
π
i
p
x
/
h
d
p
,
ϕ
(
p
)
=
1
h
∫
−
∞
∞
ψ
(
x
)
e
−
2
π
i
p
x
/
h
d
x
,
∫
−
∞
∞
|
ψ
(
x
)
|
2
d
x
=
∫
−
∞
∞
|
ϕ
(
p
)
|
2
d
p
.
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.