
Mathematical Methods in the Physical Sciences
3rd Edition
ISBN: 9780471198260
Author: Mary L. Boas
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 7.6, Problem 2P
For each of the periodic functions in Problems 5.1 to 5.11, use Dirichlet’s theorem to find the value to which the Fourier series converges at
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Remix
4. Direction Fields/Phase Portraits. Use the given direction fields to plot solution curves
to each of the given initial value problems.
(a)
x = x+2y
1111
y = -3x+y
with x(0) = 1, y(0) = -1
(b) Consider the initial value problem corresponding to the given phase portrait.
x = y
y' = 3x + 2y
Draw two "straight line solutions"
passing through (0,0)
(c) Make guesses for the equations of the straight line solutions: y = ax.
It was homework
No chatgpt pls will upvote
Chapter 7 Solutions
Mathematical Methods in the Physical Sciences
Ch. 7.2 - In Problems 1 to 6 find the amplitude, period,...Ch. 7.2 - In Problems 1 to 6 find the amplitude, period,...Ch. 7.2 - In Problems 1 to 6 find the amplitude, period,...Ch. 7.2 - In Problems 1 to 6 find the amplitude, period,...Ch. 7.2 - In Problems 1 to 6 find the amplitude, period,...Ch. 7.2 - In Problems 1 to 6 find the amplitude, period,...Ch. 7.2 - In Problems 7 to 10 you are given a complex...Ch. 7.2 - In Problems 7 to 10 you are given a complex...Ch. 7.2 - In Problems 7 to 10 you are given a complex...Ch. 7.2 - In Problems 7 to 10 you are given a complex...
Ch. 7.2 - The charge q on a capacitor in a simple a-c...Ch. 7.2 - RepeatProblem11:(a)ifq=Re4e30it;(b)ifq=Im4e30it.Ch. 7.2 - A simple pendulum consists of a point mass m...Ch. 7.2 - The displacements x of two simple pendulums (see...Ch. 7.2 - As in Problem 14, the displacements x of two...Ch. 7.2 - As in Problem 14, let the displacements be...Ch. 7.2 - Show that equation (2.10) for a wave can be...Ch. 7.2 - In Problems 18 to 20, find the amplitude, period,...Ch. 7.2 - In Problems 18 to 20, find the amplitude, period,...Ch. 7.2 - In Problems 18 to 20, find the amplitude, period,...Ch. 7.2 - Write the equation for a sinusoidal wave of...Ch. 7.2 - Do Problem 21 for a wave of amplitude 4, period 6,...Ch. 7.2 - Write an equation for a sinusoidal sound wave of...Ch. 7.2 - The velocity of sound in sea water is about...Ch. 7.2 - Write an equation for a sinusoidal radio wave of...Ch. 7.3 - For each of the following combinations of a...Ch. 7.3 - For each of the following combinations of a...Ch. 7.3 - For each of the following combinations of a...Ch. 7.3 - For each of the following combinations of a...Ch. 7.3 - Using the definition (end of Section 2) of a...Ch. 7.3 - In Problems 6 and 7, use a trigonometry formula to...Ch. 7.3 - In Problems 6 and 7, use a trigonometry formula to...Ch. 7.3 - A periodic modulated (AM) radio signal has the...Ch. 7.4 - Show that if f(x) has period p, the average value...Ch. 7.4 - (a) Prove that 0/2sin2xdx=0/2cos2xdx by making the...Ch. 7.4 - In Problems 3 to 12, find the average value of the...Ch. 7.4 - In Problems 3 to 12, find the average value of the...Ch. 7.4 - In Problems 3 to 12, find the average value of the...Ch. 7.4 - In Problems 3 to 12, find the average value of the...Ch. 7.4 - In Problems 3 to 12, find the average value of the...Ch. 7.4 - In Problems 3 to 12, find the average value of the...Ch. 7.4 - In Problems 3 to 12, find the average value of the...Ch. 7.4 - In Problems 3 to 12, find the average value of the...Ch. 7.4 - In Problems 3 to 12, find the average value of the...Ch. 7.4 - In Problems 3 to 12, find the average value of the...Ch. 7.4 - Using (4.3) and equations similar to (4.5) to...Ch. 7.4 - Use the results of Problem 13 to evaluate the...Ch. 7.4 - Use the results of Problem 13 to evaluate the...Ch. 7.4 - Use the results of Problem 13 to evaluate the...Ch. 7.5 - In each of the following problems you are given a...Ch. 7.5 - In each of the following problems you are given a...Ch. 7.5 - In each of the following problems you are given a...Ch. 7.5 - In each of the following problems you are given a...Ch. 7.5 - In each of the following problems you are given a...Ch. 7.5 - In each of the following problems you are given a...Ch. 7.5 - In each of the following problems you are given a...Ch. 7.5 - In each of the following problems you are given a...Ch. 7.5 - In each of the following problems you are given a...Ch. 7.5 - In each of the following problems you are given a...Ch. 7.5 - In each of the following problems you are given a...Ch. 7.5 - Show that in (5.2) the average values of...Ch. 7.5 - Write out the details of the derivation of...Ch. 7.6 - For each of the periodic functions in Problems 5.1...Ch. 7.6 - For each of the periodic functions in Problems 5.1...Ch. 7.6 - For each of the periodic functions in Problems 5.1...Ch. 7.6 - For each of the periodic functions in Problems 5.1...Ch. 7.6 - For each of the periodic functions in Problems 5.1...Ch. 7.6 - For each of the periodic functions in Problems 5.1...Ch. 7.6 - For each of the periodic functions in Problems 5.1...Ch. 7.6 - For each of the periodic functions in Problems 5.1...Ch. 7.6 - For each of the periodic functions in Problems 5.1...Ch. 7.6 - For each of the periodic functions in Problems 5.1...Ch. 7.6 - For each of the periodic functions in Problems 5.1...Ch. 7.6 - Use a computer to produce graphs like Fig. 6.2...Ch. 7.6 - Repeat the example using the same Fourier series...Ch. 7.6 - Use Problem 5.7 to show that oddn1/n2=2/8. Try...Ch. 7.6 - UseProblem5.11toshowthat1221+1421+1621+=12.Ch. 7.7 - Expand the same functions as in Problems 5.1 to...Ch. 7.7 - Expand the same functions as in Problems 5.1 to...Ch. 7.7 - Expand the same functions as in Problems 5.1 to...Ch. 7.7 - Expand the same functions as in Problems 5.1 to...Ch. 7.7 - Expand the same functions as in Problems 5.1 to...Ch. 7.7 - Expand the same functions as in Problems 5.1 to...Ch. 7.7 - Expand the same functions as in Problems 5.1 to...Ch. 7.7 - Expand the same functions as in Problems 5.1 to...Ch. 7.7 - Expand the same functions as in Problems 5.1 to...Ch. 7.7 - Expand the same functions as in Problems 5.1 to...Ch. 7.7 - Expand the same functions as in Problems 5.1 to...Ch. 7.7 - Show that if a real f(x) is expanded in a complex...Ch. 7.7 - If f(x)=12a0+1ancosnx+1bnsinnx=cneinx, use Eulers...Ch. 7.8 - In Problems 5.1 to 5.9, define each function by...Ch. 7.8 - In Problems 5.1 to 5.9, define each function by...Ch. 7.8 - In Problems 5.1 to 5.9, define each function by...Ch. 7.8 - In Problems 5.1 to 5.9, define each function by...Ch. 7.8 - In Problems 5.1 to 5.9, define each function by...Ch. 7.8 - In Problems 5.1 to 5.9, define each function by...Ch. 7.8 - In Problems 5.1 to 5.9, define each function by...Ch. 7.8 - In Problems 5.1 to 5.9, define each function by...Ch. 7.8 - In Problems 5.1 to 5.9, define each function by...Ch. 7.8 - (a) Sketch several periods of the function f(x) of...Ch. 7.8 - In Problems 11 to 14, parts (a) and (b), you are...Ch. 7.8 - In Problems 11 to 14, parts (a) and (b), you are...Ch. 7.8 - In Problems 11 to 14, parts (a) and (b), you are...Ch. 7.8 - In Problems 11 to 14, parts (a) and (b), you are...Ch. 7.8 - Sketch (or computer plot) each of the following...Ch. 7.8 - Each of the following functions is given over one...Ch. 7.8 - Each of the following functions is given over one...Ch. 7.8 - Each of the following functions is given over one...Ch. 7.8 - Each of the following functions is given over one...Ch. 7.8 - Each of the following functions is given over one...Ch. 7.8 - Write out the details of the derivation of the...Ch. 7.9 - The functions in Problems 1 to 3 are neither even...Ch. 7.9 - The functions in Problems 1 to 3 are neither even...Ch. 7.9 - The functions in Problems 1 to 3 are neither even...Ch. 7.9 - The functions in Problems 1 to 3 are neither even...Ch. 7.9 - Each of the functions in Problems 5 to 12 is given...Ch. 7.9 - Each of the functions in Problems 5 to 12 is given...Ch. 7.9 - Each of the functions in Problems 5 to 12 is given...Ch. 7.9 - Each of the functions in Problems 5 to 12 is given...Ch. 7.9 - Each of the functions in Problems 5 to 12 is given...Ch. 7.9 - Each of the functions in Problems 5 to 12 is given...Ch. 7.9 - Each of the functions in Problems 5 to 12 is given...Ch. 7.9 - Each of the functions in Problems 5 to 12 is given...Ch. 7.9 - Give algebraic proofs of (9.3). Hint: Write...Ch. 7.9 - Give algebraic proofs that for even and odd...Ch. 7.9 - Given f(x)=x for 0x1, sketch the even function fc...Ch. 7.9 - Let f(x)=sin2x,0x. Sketch (or computer plot) the...Ch. 7.9 - In Problems 17 to 22 you are given f(x) on an...Ch. 7.9 - In Problems 17 to 22 you are given f(x) on an...Ch. 7.9 - In Problems 17 to 22 you are given f(x) on an...Ch. 7.9 - In Problems 17 to 22 you are given f(x) on an...Ch. 7.9 - In Problems 17 to 22 you are given f(x) on an...Ch. 7.9 - In Problems 17 to 22 you are given f(x) on an...Ch. 7.9 - If a violin string is plucked (pulled aside and...Ch. 7.9 - If, in Problem 23, the string is stopped at the...Ch. 7.9 - Suppose that f(x) and its derivative f(x) are both...Ch. 7.9 - In Problems 26 and 27, find the indicated Fourier...Ch. 7.9 - In Problems 26 and 27, find the indicated Fourier...Ch. 7.10 - In Problems 1 to 3, the graphs sketched represent...Ch. 7.10 - In Problems 1 to 3, the graphs sketched represent...Ch. 7.10 - In Problems 1 to 3, the graphs sketched represent...Ch. 7.10 - In Problems 4 to 10, the sketches show several...Ch. 7.10 - In Problems 4 to 10, the sketches show several...Ch. 7.10 - In Problems 4 to 10, the sketches show several...Ch. 7.10 - In Problems 4 to 10, the sketches show several...Ch. 7.10 - In Problems 4 to 10, the sketches show several...Ch. 7.10 - In Problems 4 to 10, the sketches show several...Ch. 7.10 - In Problems 4 to 10, the sketches show several...Ch. 7.11 - Prove (11.4) for a function of period 2l expanded...Ch. 7.11 - Prove that if f(x)=i=cneinx, then the average...Ch. 7.11 - If f(x) is complex, we usually want the average of...Ch. 7.11 - When a current I flows through a resistance R, the...Ch. 7.11 - Use Parsevals theorem and the results of the...Ch. 7.11 - Use Parsevals theorem and the results of the...Ch. 7.11 - Use Parsevals theorem and the results of the...Ch. 7.11 - Use Parsevals theorem and the results of the...Ch. 7.11 - Use Parsevals theorem and the results of the...Ch. 7.11 - A general form of Parsevals theorem says that if...Ch. 7.11 - Let f(x) on (0,2l) satisfy f(2lx)=f(x), that is,...Ch. 7.12 - Following a method similar to that used in...Ch. 7.12 - Do Example 1 above by using a cosine transform...Ch. 7.12 - In Problems 3 to 12, find the exponential Fourier...Ch. 7.12 - In Problems 3 to 12, find the exponential Fourier...Ch. 7.12 - In Problems 3 to 12, find the exponential Fourier...Ch. 7.12 - In Problems 3 to 12, find the exponential Fourier...Ch. 7.12 - In Problems 3 to 12, find the exponential Fourier...Ch. 7.12 - In Problems 3 to 12, find the exponential Fourier...Ch. 7.12 - In Problems 3 to 12, find the exponential Fourier...Ch. 7.12 - In Problems 3 to 12, find the exponential Fourier...Ch. 7.12 - In Problems 3 to 12, find the exponential Fourier...Ch. 7.12 - In Problems 3 to 12, find the exponential Fourier...Ch. 7.12 - In Problems 13 to 16, find the Fourier cosine...Ch. 7.12 - In Problems 13 to 16, find the Fourier cosine...Ch. 7.12 - In Problems 13 to 16, find the Fourier cosine...Ch. 7.12 - In Problems 13 to 16, find the Fourier cosine...Ch. 7.12 - In Problems 17 to 20, find the Fourier sine...Ch. 7.12 - In Problems 17 to 20, find the Fourier sine...Ch. 7.12 - In Problems 17 to 20, find the Fourier sine...Ch. 7.12 - In Problems 17 to 20, find the Fourier sine...Ch. 7.12 - Find the Fourier transform of f(x)=ex2/22. Hint:...Ch. 7.12 - The function j1()=(cossin)/ is of interest in...Ch. 7.12 - Using Problem 17, show that...Ch. 7.12 - (a) Find the exponential Fourier transform of...Ch. 7.12 - (a) Represent as an exponential Fourier transform...Ch. 7.12 - Using Problem 15, show that 01cos2d=2.Ch. 7.12 - Represent each of the following functions (a) by a...Ch. 7.12 - Represent each of the following functions (a) by a...Ch. 7.12 - Represent each of the following functions (a) by a...Ch. 7.12 - Represent each of the following functions (a) by a...Ch. 7.12 - Verify Parsevals theorem (12.24) for the special...Ch. 7.12 - Verify Parsevals theorem (12.24) for the special...Ch. 7.12 - Verify Parsevals theorem (12.24) for the special...Ch. 7.12 - Show that if (12.2) is written with the factor 1/2...Ch. 7.12 - Starting with the symmetrized integrals as in...Ch. 7.12 - Normalize f(x) in Problem 21; that is find the...Ch. 7.13 - The displacement (from equilibrium) of a particle...Ch. 7.13 - The symbol [x] means the greatest integer less...Ch. 7.13 - We have said that Fourier series can represent...Ch. 7.13 - The diagram shows a relaxation oscillator. The...Ch. 7.13 - Consider one arch of f(x)=sinx. Show that the...Ch. 7.13 - Let f(t)=eit on (,). Expand f(t) in a complex...Ch. 7.13 - Given f(x)=x on (,), expand f(x) in an appropriate...Ch. 7.13 - From facts you know, find in your head the average...Ch. 7.13 - Given f(x)= x,0x1, 2,1x2. (a) Sketch at least...Ch. 7.13 - (a) Sketch at least three periods of the graph of...Ch. 7.13 - Find the three Fourier series in Problems 9 and...Ch. 7.13 - What would be the apparent frequency of a sound...Ch. 7.13 - (a) Given f(x)=(x)/2 on (0,), find the sine series...Ch. 7.13 - (a) Find the Fourier series of period 2 for...Ch. 7.13 - Given f(x)=1,2x0,1,0x2, find the exponential...Ch. 7.13 - Given f(x)=x,0x1,2x,1x2,0,x2, find the cosine...Ch. 7.13 - Show that the Fourier sine transform of x1/2 is...Ch. 7.13 - Let f(x) and g() be a pair of Fourier transforms....Ch. 7.13 - Find the form of Parsevals theorem ( 12.24) for...Ch. 7.13 - Find the exponential Fourier transform of...Ch. 7.13 - Define a function h(x)=k=f(x+2k), assuming that...Ch. 7.13 - Use Poissons formula (Problem 21b) and Problem 20...Ch. 7.13 - Use Parsevals theorem and Problem 12.11 to...
Additional Math Textbook Solutions
Find more solutions based on key concepts
Derivatives of Logarithms
In Exercises 11–40, find the derivative of y with respect to x, t, or θ, as appropria...
University Calculus: Early Transcendentals (4th Edition)
Version 2 of the Chain Rule Use Version 2 of the Chain Rule to calculate the derivatives of the following funct...
Calculus: Early Transcendentals (2nd Edition)
The equivalent expression of x(y+z) by using the commutative property.
Calculus for Business, Economics, Life Sciences, and Social Sciences (14th Edition)
Identifying a Test In Exercises 21–24, determine whether the hypothesis test is left-tailed, right-tailed, or t...
Elementary Statistics: Picturing the World (7th Edition)
a. Fill in the missing numbers in the following factor tree. b. How could you find the top numbers without find...
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- (7) (12 points) Let F(x, y, z) = (y, x+z cos yz, y cos yz). Ꮖ (a) (4 points) Show that V x F = 0. (b) (4 points) Find a potential f for the vector field F. (c) (4 points) Let S be a surface in R3 for which the Stokes' Theorem is valid. Use Stokes' Theorem to calculate the line integral Jos F.ds; as denotes the boundary of S. Explain your answer.arrow_forward(3) (16 points) Consider z = uv, u = x+y, v=x-y. (a) (4 points) Express z in the form z = fog where g: R² R² and f: R² → R. (b) (4 points) Use the chain rule to calculate Vz = (2, 2). Show all intermediate steps otherwise no credit. (c) (4 points) Let S be the surface parametrized by T(x, y) = (x, y, ƒ (g(x, y)) (x, y) = R². Give a parametric description of the tangent plane to S at the point p = T(x, y). (d) (4 points) Calculate the second Taylor polynomial Q(x, y) (i.e. the quadratic approximation) of F = (fog) at a point (a, b). Verify that Q(x,y) F(a+x,b+y). =arrow_forward(6) (8 points) Change the order of integration and evaluate (z +4ry)drdy . So S√ ² 0arrow_forward
- (10) (16 points) Let R>0. Consider the truncated sphere S given as x² + y² + (z = √15R)² = R², z ≥0. where F(x, y, z) = −yi + xj . (a) (8 points) Consider the vector field V (x, y, z) = (▼ × F)(x, y, z) Think of S as a hot-air balloon where the vector field V is the velocity vector field measuring the hot gasses escaping through the porous surface S. The flux of V across S gives the volume flow rate of the gasses through S. Calculate this flux. Hint: Parametrize the boundary OS. Then use Stokes' Theorem. (b) (8 points) Calculate the surface area of the balloon. To calculate the surface area, do the following: Translate the balloon surface S by the vector (-15)k. The translated surface, call it S+ is part of the sphere x² + y²+z² = R². Why do S and S+ have the same area? ⚫ Calculate the area of S+. What is the natural spherical parametrization of S+?arrow_forward(1) (8 points) Let c(t) = (et, et sint, et cost). Reparametrize c as a unit speed curve starting from the point (1,0,1).arrow_forward(9) (16 points) Let F(x, y, z) = (x² + y − 4)i + 3xyj + (2x2 +z²)k = - = (x²+y4,3xy, 2x2 + 2²). (a) (4 points) Calculate the divergence and curl of F. (b) (6 points) Find the flux of V x F across the surface S given by x² + y²+2² = 16, z ≥ 0. (c) (6 points) Find the flux of F across the boundary of the unit cube E = [0,1] × [0,1] x [0,1].arrow_forward
- (8) (12 points) (a) (8 points) Let C be the circle x² + y² = 4. Let F(x, y) = (2y + e²)i + (x + sin(y²))j. Evaluate the line integral JF. F.ds. Hint: First calculate V x F. (b) (4 points) Let S be the surface r² + y² + z² = 4, z ≤0. Calculate the flux integral √(V × F) F).dS. Justify your answer.arrow_forwardDetermine whether the Law of Sines or the Law of Cosines can be used to find another measure of the triangle. a = 13, b = 15, C = 68° Law of Sines Law of Cosines Then solve the triangle. (Round your answers to four decimal places.) C = 15.7449 A = 49.9288 B = 62.0712 × Need Help? Read It Watch Itarrow_forward(4) (10 points) Evaluate √(x² + y² + z²)¹⁄² exp[}(x² + y² + z²)²] dV where D is the region defined by 1< x² + y²+ z² ≤4 and √√3(x² + y²) ≤ z. Note: exp(x² + y²+ 2²)²] means el (x²+ y²+=²)²]¸arrow_forward
- (2) (12 points) Let f(x,y) = x²e¯. (a) (4 points) Calculate Vf. (b) (4 points) Given x directional derivative 0, find the line of vectors u = D₁f(x, y) = 0. (u1, 2) such that the - (c) (4 points) Let u= (1+3√3). Show that Duƒ(1, 0) = ¦|▼ƒ(1,0)| . What is the angle between Vf(1,0) and the vector u? Explain.arrow_forwardFind the missing values by solving the parallelogram shown in the figure. (The lengths of the diagonals are given by c and d. Round your answers to two decimal places.) a b 29 39 66.50 C 17.40 d 0 54.0 126° a Ꮎ b darrow_forwardAnswer the following questions related to the following matrix A = 3 ³).arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
But what is the Fourier Transform? A visual introduction.; Author: 3Blue1Brown;https://www.youtube.com/watch?v=spUNpyF58BY;License: Standard YouTube License, CC-BY