
Mathematical Methods in the Physical Sciences
3rd Edition
ISBN: 9780471198260
Author: Mary L. Boas
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 7.5, Problem 12P
Show that in (5.2) the average values of
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
answer number 4
3. Bayesian Inference – Updating Beliefs
A medical test for a rare disease has the following characteristics:
Sensitivity (true positive rate): 99%
Specificity (true negative rate): 98%
The disease occurs in 0.5% of the population.
A patient receives a positive test result.
Questions:
a) Define the relevant events and use Bayes’ Theorem to compute the probability that the patient actually has the disease.b) Explain why the result might seem counterintuitive, despite the high sensitivity and specificity.c) Discuss how prior probabilities influence posterior beliefs in Bayesian inference.d) Suppose a second, independent test with the same accuracy is conducted and is also positive. Update the probability that the patient has the disease.
answer number 6
Chapter 7 Solutions
Mathematical Methods in the Physical Sciences
Ch. 7.2 - In Problems 1 to 6 find the amplitude, period,...Ch. 7.2 - In Problems 1 to 6 find the amplitude, period,...Ch. 7.2 - In Problems 1 to 6 find the amplitude, period,...Ch. 7.2 - In Problems 1 to 6 find the amplitude, period,...Ch. 7.2 - In Problems 1 to 6 find the amplitude, period,...Ch. 7.2 - In Problems 1 to 6 find the amplitude, period,...Ch. 7.2 - In Problems 7 to 10 you are given a complex...Ch. 7.2 - In Problems 7 to 10 you are given a complex...Ch. 7.2 - In Problems 7 to 10 you are given a complex...Ch. 7.2 - In Problems 7 to 10 you are given a complex...
Ch. 7.2 - The charge q on a capacitor in a simple a-c...Ch. 7.2 - RepeatProblem11:(a)ifq=Re4e30it;(b)ifq=Im4e30it.Ch. 7.2 - A simple pendulum consists of a point mass m...Ch. 7.2 - The displacements x of two simple pendulums (see...Ch. 7.2 - As in Problem 14, the displacements x of two...Ch. 7.2 - As in Problem 14, let the displacements be...Ch. 7.2 - Show that equation (2.10) for a wave can be...Ch. 7.2 - In Problems 18 to 20, find the amplitude, period,...Ch. 7.2 - In Problems 18 to 20, find the amplitude, period,...Ch. 7.2 - In Problems 18 to 20, find the amplitude, period,...Ch. 7.2 - Write the equation for a sinusoidal wave of...Ch. 7.2 - Do Problem 21 for a wave of amplitude 4, period 6,...Ch. 7.2 - Write an equation for a sinusoidal sound wave of...Ch. 7.2 - The velocity of sound in sea water is about...Ch. 7.2 - Write an equation for a sinusoidal radio wave of...Ch. 7.3 - For each of the following combinations of a...Ch. 7.3 - For each of the following combinations of a...Ch. 7.3 - For each of the following combinations of a...Ch. 7.3 - For each of the following combinations of a...Ch. 7.3 - Using the definition (end of Section 2) of a...Ch. 7.3 - In Problems 6 and 7, use a trigonometry formula to...Ch. 7.3 - In Problems 6 and 7, use a trigonometry formula to...Ch. 7.3 - A periodic modulated (AM) radio signal has the...Ch. 7.4 - Show that if f(x) has period p, the average value...Ch. 7.4 - (a) Prove that 0/2sin2xdx=0/2cos2xdx by making the...Ch. 7.4 - In Problems 3 to 12, find the average value of the...Ch. 7.4 - In Problems 3 to 12, find the average value of the...Ch. 7.4 - In Problems 3 to 12, find the average value of the...Ch. 7.4 - In Problems 3 to 12, find the average value of the...Ch. 7.4 - In Problems 3 to 12, find the average value of the...Ch. 7.4 - In Problems 3 to 12, find the average value of the...Ch. 7.4 - In Problems 3 to 12, find the average value of the...Ch. 7.4 - In Problems 3 to 12, find the average value of the...Ch. 7.4 - In Problems 3 to 12, find the average value of the...Ch. 7.4 - In Problems 3 to 12, find the average value of the...Ch. 7.4 - Using (4.3) and equations similar to (4.5) to...Ch. 7.4 - Use the results of Problem 13 to evaluate the...Ch. 7.4 - Use the results of Problem 13 to evaluate the...Ch. 7.4 - Use the results of Problem 13 to evaluate the...Ch. 7.5 - In each of the following problems you are given a...Ch. 7.5 - In each of the following problems you are given a...Ch. 7.5 - In each of the following problems you are given a...Ch. 7.5 - In each of the following problems you are given a...Ch. 7.5 - In each of the following problems you are given a...Ch. 7.5 - In each of the following problems you are given a...Ch. 7.5 - In each of the following problems you are given a...Ch. 7.5 - In each of the following problems you are given a...Ch. 7.5 - In each of the following problems you are given a...Ch. 7.5 - In each of the following problems you are given a...Ch. 7.5 - In each of the following problems you are given a...Ch. 7.5 - Show that in (5.2) the average values of...Ch. 7.5 - Write out the details of the derivation of...Ch. 7.6 - For each of the periodic functions in Problems 5.1...Ch. 7.6 - For each of the periodic functions in Problems 5.1...Ch. 7.6 - For each of the periodic functions in Problems 5.1...Ch. 7.6 - For each of the periodic functions in Problems 5.1...Ch. 7.6 - For each of the periodic functions in Problems 5.1...Ch. 7.6 - For each of the periodic functions in Problems 5.1...Ch. 7.6 - For each of the periodic functions in Problems 5.1...Ch. 7.6 - For each of the periodic functions in Problems 5.1...Ch. 7.6 - For each of the periodic functions in Problems 5.1...Ch. 7.6 - For each of the periodic functions in Problems 5.1...Ch. 7.6 - For each of the periodic functions in Problems 5.1...Ch. 7.6 - Use a computer to produce graphs like Fig. 6.2...Ch. 7.6 - Repeat the example using the same Fourier series...Ch. 7.6 - Use Problem 5.7 to show that oddn1/n2=2/8. Try...Ch. 7.6 - UseProblem5.11toshowthat1221+1421+1621+=12.Ch. 7.7 - Expand the same functions as in Problems 5.1 to...Ch. 7.7 - Expand the same functions as in Problems 5.1 to...Ch. 7.7 - Expand the same functions as in Problems 5.1 to...Ch. 7.7 - Expand the same functions as in Problems 5.1 to...Ch. 7.7 - Expand the same functions as in Problems 5.1 to...Ch. 7.7 - Expand the same functions as in Problems 5.1 to...Ch. 7.7 - Expand the same functions as in Problems 5.1 to...Ch. 7.7 - Expand the same functions as in Problems 5.1 to...Ch. 7.7 - Expand the same functions as in Problems 5.1 to...Ch. 7.7 - Expand the same functions as in Problems 5.1 to...Ch. 7.7 - Expand the same functions as in Problems 5.1 to...Ch. 7.7 - Show that if a real f(x) is expanded in a complex...Ch. 7.7 - If f(x)=12a0+1ancosnx+1bnsinnx=cneinx, use Eulers...Ch. 7.8 - In Problems 5.1 to 5.9, define each function by...Ch. 7.8 - In Problems 5.1 to 5.9, define each function by...Ch. 7.8 - In Problems 5.1 to 5.9, define each function by...Ch. 7.8 - In Problems 5.1 to 5.9, define each function by...Ch. 7.8 - In Problems 5.1 to 5.9, define each function by...Ch. 7.8 - In Problems 5.1 to 5.9, define each function by...Ch. 7.8 - In Problems 5.1 to 5.9, define each function by...Ch. 7.8 - In Problems 5.1 to 5.9, define each function by...Ch. 7.8 - In Problems 5.1 to 5.9, define each function by...Ch. 7.8 - (a) Sketch several periods of the function f(x) of...Ch. 7.8 - In Problems 11 to 14, parts (a) and (b), you are...Ch. 7.8 - In Problems 11 to 14, parts (a) and (b), you are...Ch. 7.8 - In Problems 11 to 14, parts (a) and (b), you are...Ch. 7.8 - In Problems 11 to 14, parts (a) and (b), you are...Ch. 7.8 - Sketch (or computer plot) each of the following...Ch. 7.8 - Each of the following functions is given over one...Ch. 7.8 - Each of the following functions is given over one...Ch. 7.8 - Each of the following functions is given over one...Ch. 7.8 - Each of the following functions is given over one...Ch. 7.8 - Each of the following functions is given over one...Ch. 7.8 - Write out the details of the derivation of the...Ch. 7.9 - The functions in Problems 1 to 3 are neither even...Ch. 7.9 - The functions in Problems 1 to 3 are neither even...Ch. 7.9 - The functions in Problems 1 to 3 are neither even...Ch. 7.9 - The functions in Problems 1 to 3 are neither even...Ch. 7.9 - Each of the functions in Problems 5 to 12 is given...Ch. 7.9 - Each of the functions in Problems 5 to 12 is given...Ch. 7.9 - Each of the functions in Problems 5 to 12 is given...Ch. 7.9 - Each of the functions in Problems 5 to 12 is given...Ch. 7.9 - Each of the functions in Problems 5 to 12 is given...Ch. 7.9 - Each of the functions in Problems 5 to 12 is given...Ch. 7.9 - Each of the functions in Problems 5 to 12 is given...Ch. 7.9 - Each of the functions in Problems 5 to 12 is given...Ch. 7.9 - Give algebraic proofs of (9.3). Hint: Write...Ch. 7.9 - Give algebraic proofs that for even and odd...Ch. 7.9 - Given f(x)=x for 0x1, sketch the even function fc...Ch. 7.9 - Let f(x)=sin2x,0x. Sketch (or computer plot) the...Ch. 7.9 - In Problems 17 to 22 you are given f(x) on an...Ch. 7.9 - In Problems 17 to 22 you are given f(x) on an...Ch. 7.9 - In Problems 17 to 22 you are given f(x) on an...Ch. 7.9 - In Problems 17 to 22 you are given f(x) on an...Ch. 7.9 - In Problems 17 to 22 you are given f(x) on an...Ch. 7.9 - In Problems 17 to 22 you are given f(x) on an...Ch. 7.9 - If a violin string is plucked (pulled aside and...Ch. 7.9 - If, in Problem 23, the string is stopped at the...Ch. 7.9 - Suppose that f(x) and its derivative f(x) are both...Ch. 7.9 - In Problems 26 and 27, find the indicated Fourier...Ch. 7.9 - In Problems 26 and 27, find the indicated Fourier...Ch. 7.10 - In Problems 1 to 3, the graphs sketched represent...Ch. 7.10 - In Problems 1 to 3, the graphs sketched represent...Ch. 7.10 - In Problems 1 to 3, the graphs sketched represent...Ch. 7.10 - In Problems 4 to 10, the sketches show several...Ch. 7.10 - In Problems 4 to 10, the sketches show several...Ch. 7.10 - In Problems 4 to 10, the sketches show several...Ch. 7.10 - In Problems 4 to 10, the sketches show several...Ch. 7.10 - In Problems 4 to 10, the sketches show several...Ch. 7.10 - In Problems 4 to 10, the sketches show several...Ch. 7.10 - In Problems 4 to 10, the sketches show several...Ch. 7.11 - Prove (11.4) for a function of period 2l expanded...Ch. 7.11 - Prove that if f(x)=i=cneinx, then the average...Ch. 7.11 - If f(x) is complex, we usually want the average of...Ch. 7.11 - When a current I flows through a resistance R, the...Ch. 7.11 - Use Parsevals theorem and the results of the...Ch. 7.11 - Use Parsevals theorem and the results of the...Ch. 7.11 - Use Parsevals theorem and the results of the...Ch. 7.11 - Use Parsevals theorem and the results of the...Ch. 7.11 - Use Parsevals theorem and the results of the...Ch. 7.11 - A general form of Parsevals theorem says that if...Ch. 7.11 - Let f(x) on (0,2l) satisfy f(2lx)=f(x), that is,...Ch. 7.12 - Following a method similar to that used in...Ch. 7.12 - Do Example 1 above by using a cosine transform...Ch. 7.12 - In Problems 3 to 12, find the exponential Fourier...Ch. 7.12 - In Problems 3 to 12, find the exponential Fourier...Ch. 7.12 - In Problems 3 to 12, find the exponential Fourier...Ch. 7.12 - In Problems 3 to 12, find the exponential Fourier...Ch. 7.12 - In Problems 3 to 12, find the exponential Fourier...Ch. 7.12 - In Problems 3 to 12, find the exponential Fourier...Ch. 7.12 - In Problems 3 to 12, find the exponential Fourier...Ch. 7.12 - In Problems 3 to 12, find the exponential Fourier...Ch. 7.12 - In Problems 3 to 12, find the exponential Fourier...Ch. 7.12 - In Problems 3 to 12, find the exponential Fourier...Ch. 7.12 - In Problems 13 to 16, find the Fourier cosine...Ch. 7.12 - In Problems 13 to 16, find the Fourier cosine...Ch. 7.12 - In Problems 13 to 16, find the Fourier cosine...Ch. 7.12 - In Problems 13 to 16, find the Fourier cosine...Ch. 7.12 - In Problems 17 to 20, find the Fourier sine...Ch. 7.12 - In Problems 17 to 20, find the Fourier sine...Ch. 7.12 - In Problems 17 to 20, find the Fourier sine...Ch. 7.12 - In Problems 17 to 20, find the Fourier sine...Ch. 7.12 - Find the Fourier transform of f(x)=ex2/22. Hint:...Ch. 7.12 - The function j1()=(cossin)/ is of interest in...Ch. 7.12 - Using Problem 17, show that...Ch. 7.12 - (a) Find the exponential Fourier transform of...Ch. 7.12 - (a) Represent as an exponential Fourier transform...Ch. 7.12 - Using Problem 15, show that 01cos2d=2.Ch. 7.12 - Represent each of the following functions (a) by a...Ch. 7.12 - Represent each of the following functions (a) by a...Ch. 7.12 - Represent each of the following functions (a) by a...Ch. 7.12 - Represent each of the following functions (a) by a...Ch. 7.12 - Verify Parsevals theorem (12.24) for the special...Ch. 7.12 - Verify Parsevals theorem (12.24) for the special...Ch. 7.12 - Verify Parsevals theorem (12.24) for the special...Ch. 7.12 - Show that if (12.2) is written with the factor 1/2...Ch. 7.12 - Starting with the symmetrized integrals as in...Ch. 7.12 - Normalize f(x) in Problem 21; that is find the...Ch. 7.13 - The displacement (from equilibrium) of a particle...Ch. 7.13 - The symbol [x] means the greatest integer less...Ch. 7.13 - We have said that Fourier series can represent...Ch. 7.13 - The diagram shows a relaxation oscillator. The...Ch. 7.13 - Consider one arch of f(x)=sinx. Show that the...Ch. 7.13 - Let f(t)=eit on (,). Expand f(t) in a complex...Ch. 7.13 - Given f(x)=x on (,), expand f(x) in an appropriate...Ch. 7.13 - From facts you know, find in your head the average...Ch. 7.13 - Given f(x)= x,0x1, 2,1x2. (a) Sketch at least...Ch. 7.13 - (a) Sketch at least three periods of the graph of...Ch. 7.13 - Find the three Fourier series in Problems 9 and...Ch. 7.13 - What would be the apparent frequency of a sound...Ch. 7.13 - (a) Given f(x)=(x)/2 on (0,), find the sine series...Ch. 7.13 - (a) Find the Fourier series of period 2 for...Ch. 7.13 - Given f(x)=1,2x0,1,0x2, find the exponential...Ch. 7.13 - Given f(x)=x,0x1,2x,1x2,0,x2, find the cosine...Ch. 7.13 - Show that the Fourier sine transform of x1/2 is...Ch. 7.13 - Let f(x) and g() be a pair of Fourier transforms....Ch. 7.13 - Find the form of Parsevals theorem ( 12.24) for...Ch. 7.13 - Find the exponential Fourier transform of...Ch. 7.13 - Define a function h(x)=k=f(x+2k), assuming that...Ch. 7.13 - Use Poissons formula (Problem 21b) and Problem 20...Ch. 7.13 - Use Parsevals theorem and Problem 12.11 to...
Additional Math Textbook Solutions
Find more solutions based on key concepts
CHECK POINT 1 In a survey on musical tastes, respondents were asked: Do you listed to classical music? Do you l...
Thinking Mathematically (6th Edition)
Retirement Income Several times during the year, the U.S. Census Bureau takes random samples from the populatio...
Introductory Statistics
Answer the following regarding the English alphabet. a. Determine the ratio of vowels to consonants. b. What is...
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
1. combination of numbers, variables, and operation symbols is called an algebraic______.
Algebra and Trigonometry (6th Edition)
NOTE: Write your answers using interval notation when appropriate.
CHECKING ANALYTIC SKILLS Fill in each blank ...
Graphical Approach To College Algebra
In Exercises 25–28, use the confidence interval to find the margin of error and the sample mean.
25. (12.0, 14....
Elementary Statistics: Picturing the World (7th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- answer number 2arrow_forward4. Linear Regression - Model Assumptions and Interpretation A real estate analyst is studying how house prices (Y) are related to house size in square feet (X). A simple linear regression model is proposed: The analyst fits the model and obtains: • Ŷ50,000+150X YBoB₁X + € • R² = 0.76 • Residuals show a fan-shaped pattern when plotted against fitted values. Questions: a) Interpret the slope coefficient in context. b) Explain what the R² value tells us about the model's performance. c) Based on the residual pattern, what regression assumption is likely violated? What might be the consequence? d) Suggest at least two remedies to improve the model, based on the residual analysis.arrow_forward5. Probability Distributions – Continuous Random Variables A factory machine produces metal rods whose lengths (in cm) follow a continuous uniform distribution on the interval [98, 102]. Questions: a) Define the probability density function (PDF) of the rod length.b) Calculate the probability that a randomly selected rod is shorter than 99 cm.c) Determine the expected value and variance of rod lengths.d) If a sample of 25 rods is selected, what is the probability that their average length is between 99.5 cm and 100.5 cm? Justify your answer using the appropriate distribution.arrow_forward
- 2. Hypothesis Testing - Two Sample Means A nutritionist is investigating the effect of two different diet programs, A and B, on weight loss. Two independent samples of adults were randomly assigned to each diet for 12 weeks. The weight losses (in kg) are normally distributed. Sample A: n = 35, 4.8, s = 1.2 Sample B: n=40, 4.3, 8 = 1.0 Questions: a) State the null and alternative hypotheses to test whether there is a significant difference in mean weight loss between the two diet programs. b) Perform a hypothesis test at the 5% significance level and interpret the result. c) Compute a 95% confidence interval for the difference in means and interpret it. d) Discuss assumptions of this test and explain how violations of these assumptions could impact the results.arrow_forward1. Sampling Distribution and the Central Limit Theorem A company produces batteries with a mean lifetime of 300 hours and a standard deviation of 50 hours. The lifetimes are not normally distributed—they are right-skewed due to some batteries lasting unusually long. Suppose a quality control analyst selects a random sample of 64 batteries from a large production batch. Questions: a) Explain whether the distribution of sample means will be approximately normal. Justify your answer using the Central Limit Theorem. b) Compute the mean and standard deviation of the sampling distribution of the sample mean. c) What is the probability that the sample mean lifetime of the 64 batteries exceeds 310 hours? d) Discuss how the sample size affects the shape and variability of the sampling distribution.arrow_forwardAn airplane flies due west at an airspeed of 428 mph. The wind blows in the direction of 41° south of west at 50 mph. What is the ground speed of the airplane? What is the bearing of the airplane? 428 mph 41° 50 mph a. The ground speed of the airplane is b. The bearing of the airplane is mph. south of west.arrow_forward
- Rylee's car is stuck in the mud. Roman and Shanice come along in a truck to help pull her out. They attach one end of a tow strap to the front of the car and the other end to the truck's trailer hitch, and the truck starts to pull. Meanwhile, Roman and Shanice get behind the car and push. The truck generates a horizontal force of 377 lb on the car. Roman and Shanice are pushing at a slight upward angle and generate a force of 119 lb on the car. These forces can be represented by vectors, as shown in the figure below. The angle between these vectors is 20.2°. Find the resultant force (the vector sum), then give its magnitude and its direction angle from the positive x-axis. 119 lb 20.2° 377 lb a. The resultant force is (Tip: omit degree notations from your answers; e.g. enter cos(45) instead of cos(45°)) b. It's magnitude is lb. c. It's angle from the positive x-axis isarrow_forwardComplete the table below. For solutions, round to the nearest whole number.arrow_forwardA biologist is investigating the effect of potential plant hormones by treating 20 stem segments. At the end of the observation period he computes the following length averages: Compound X = 1.18 Compound Y = 1.17 Based on these mean values he concludes that there are no treatment differences. 1) Are you satisfied with his conclusion? Why or why not? 2) If he asked you for help in analyzing these data, what statistical method would you suggest that he use to come to a meaningful conclusion about his data and why? 3) Are there any other questions you would ask him regarding his experiment, data collection, and analysis methods?arrow_forward
- Businessarrow_forwardAnswer first questionarrow_forwardLet the universal set be whole numbers 1 through 20 inclusive. That is, U = {1, 2, 3, 4, . . ., 19, 20}. Let A, B, and C be subsets of U. Let A be the set of all prime numbers: A = {2, 3, 5, 7, 11, 13, 17, 19} Let B be the set of all odd numbers: B = {1,3,5,7, . . ., 17, 19} Let C be the set of all square numbers: C = {1,4,9,16}arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Evaluating Indefinite Integrals; Author: Professor Dave Explains;https://www.youtube.com/watch?v=-xHA2RjVkwY;License: Standard YouTube License, CC-BY
Calculus - Lesson 16 | Indefinite and Definite Integrals | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=bMnMzNKL9Ks;License: Standard YouTube License, CC-BY