Mathematical Methods in the Physical Sciences
3rd Edition
ISBN: 9780471198260
Author: Mary L. Boas
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 7.2, Problem 1P
In Problems 1 to 6 find the amplitude, period, frequency, and velocity amplitude for the motion of a particle whose distance
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Let G be a graph with n ≥ 2 vertices x1, x2, . . . , xn, and let A be the adjacency matrixof G. Prove that if G is connected, then every entry in the matrix A^n−1 + A^nis positive.
Module Code: MATH380202
1. (a) Define the terms "strongly stationary" and "weakly stationary".
Let {X} be a stochastic process defined for all t € Z. Assuming that {X+} is
weakly stationary, define the autocorrelation function (acf) Pk, for lag k.
What conditions must a process {X+) satisfy for it to be white noise?
(b) Let N(0, 1) for t€ Z, with the {+} being mutually independent. Which of
the following processes {X+} are weakly stationary for t> 0? Briefly justify your
answers.
i. Xt for all > 0.
ii. Xo~N(0,) and X₁ = 2X+-1+ &t for t > 0.
(c) Provide an expression for estimating the autocovariance function for a sample
X1,..., X believed to be from a weakly stationary process. How is the autocor-
relation function Pk then estimated, and a correlogram (or acf plot) constructed?
(d) Consider the weakly stationary stochastic process ✗+ = + + +-1+ +-2 where
{E} is a white noise process with variance 1. Compute the population autocorre-
lation function Pk for all k = 0, 1, ....
iii)
i=5
x² = Σ
i=1
(Yi — mi)²
σ
2
By minimising oc², derive the formulae
for the best values of the model for
a 1 degree polynomial (2 parameters).
Chapter 7 Solutions
Mathematical Methods in the Physical Sciences
Ch. 7.2 - In Problems 1 to 6 find the amplitude, period,...Ch. 7.2 - In Problems 1 to 6 find the amplitude, period,...Ch. 7.2 - In Problems 1 to 6 find the amplitude, period,...Ch. 7.2 - In Problems 1 to 6 find the amplitude, period,...Ch. 7.2 - In Problems 1 to 6 find the amplitude, period,...Ch. 7.2 - In Problems 1 to 6 find the amplitude, period,...Ch. 7.2 - In Problems 7 to 10 you are given a complex...Ch. 7.2 - In Problems 7 to 10 you are given a complex...Ch. 7.2 - In Problems 7 to 10 you are given a complex...Ch. 7.2 - In Problems 7 to 10 you are given a complex...
Ch. 7.2 - The charge q on a capacitor in a simple a-c...Ch. 7.2 - RepeatProblem11:(a)ifq=Re4e30it;(b)ifq=Im4e30it.Ch. 7.2 - A simple pendulum consists of a point mass m...Ch. 7.2 - The displacements x of two simple pendulums (see...Ch. 7.2 - As in Problem 14, the displacements x of two...Ch. 7.2 - As in Problem 14, let the displacements be...Ch. 7.2 - Show that equation (2.10) for a wave can be...Ch. 7.2 - In Problems 18 to 20, find the amplitude, period,...Ch. 7.2 - In Problems 18 to 20, find the amplitude, period,...Ch. 7.2 - In Problems 18 to 20, find the amplitude, period,...Ch. 7.2 - Write the equation for a sinusoidal wave of...Ch. 7.2 - Do Problem 21 for a wave of amplitude 4, period 6,...Ch. 7.2 - Write an equation for a sinusoidal sound wave of...Ch. 7.2 - The velocity of sound in sea water is about...Ch. 7.2 - Write an equation for a sinusoidal radio wave of...Ch. 7.3 - For each of the following combinations of a...Ch. 7.3 - For each of the following combinations of a...Ch. 7.3 - For each of the following combinations of a...Ch. 7.3 - For each of the following combinations of a...Ch. 7.3 - Using the definition (end of Section 2) of a...Ch. 7.3 - In Problems 6 and 7, use a trigonometry formula to...Ch. 7.3 - In Problems 6 and 7, use a trigonometry formula to...Ch. 7.3 - A periodic modulated (AM) radio signal has the...Ch. 7.4 - Show that if f(x) has period p, the average value...Ch. 7.4 - (a) Prove that 0/2sin2xdx=0/2cos2xdx by making the...Ch. 7.4 - In Problems 3 to 12, find the average value of the...Ch. 7.4 - In Problems 3 to 12, find the average value of the...Ch. 7.4 - In Problems 3 to 12, find the average value of the...Ch. 7.4 - In Problems 3 to 12, find the average value of the...Ch. 7.4 - In Problems 3 to 12, find the average value of the...Ch. 7.4 - In Problems 3 to 12, find the average value of the...Ch. 7.4 - In Problems 3 to 12, find the average value of the...Ch. 7.4 - In Problems 3 to 12, find the average value of the...Ch. 7.4 - In Problems 3 to 12, find the average value of the...Ch. 7.4 - In Problems 3 to 12, find the average value of the...Ch. 7.4 - Using (4.3) and equations similar to (4.5) to...Ch. 7.4 - Use the results of Problem 13 to evaluate the...Ch. 7.4 - Use the results of Problem 13 to evaluate the...Ch. 7.4 - Use the results of Problem 13 to evaluate the...Ch. 7.5 - In each of the following problems you are given a...Ch. 7.5 - In each of the following problems you are given a...Ch. 7.5 - In each of the following problems you are given a...Ch. 7.5 - In each of the following problems you are given a...Ch. 7.5 - In each of the following problems you are given a...Ch. 7.5 - In each of the following problems you are given a...Ch. 7.5 - In each of the following problems you are given a...Ch. 7.5 - In each of the following problems you are given a...Ch. 7.5 - In each of the following problems you are given a...Ch. 7.5 - In each of the following problems you are given a...Ch. 7.5 - In each of the following problems you are given a...Ch. 7.5 - Show that in (5.2) the average values of...Ch. 7.5 - Write out the details of the derivation of...Ch. 7.6 - For each of the periodic functions in Problems 5.1...Ch. 7.6 - For each of the periodic functions in Problems 5.1...Ch. 7.6 - For each of the periodic functions in Problems 5.1...Ch. 7.6 - For each of the periodic functions in Problems 5.1...Ch. 7.6 - For each of the periodic functions in Problems 5.1...Ch. 7.6 - For each of the periodic functions in Problems 5.1...Ch. 7.6 - For each of the periodic functions in Problems 5.1...Ch. 7.6 - For each of the periodic functions in Problems 5.1...Ch. 7.6 - For each of the periodic functions in Problems 5.1...Ch. 7.6 - For each of the periodic functions in Problems 5.1...Ch. 7.6 - For each of the periodic functions in Problems 5.1...Ch. 7.6 - Use a computer to produce graphs like Fig. 6.2...Ch. 7.6 - Repeat the example using the same Fourier series...Ch. 7.6 - Use Problem 5.7 to show that oddn1/n2=2/8. Try...Ch. 7.6 - UseProblem5.11toshowthat1221+1421+1621+=12.Ch. 7.7 - Expand the same functions as in Problems 5.1 to...Ch. 7.7 - Expand the same functions as in Problems 5.1 to...Ch. 7.7 - Expand the same functions as in Problems 5.1 to...Ch. 7.7 - Expand the same functions as in Problems 5.1 to...Ch. 7.7 - Expand the same functions as in Problems 5.1 to...Ch. 7.7 - Expand the same functions as in Problems 5.1 to...Ch. 7.7 - Expand the same functions as in Problems 5.1 to...Ch. 7.7 - Expand the same functions as in Problems 5.1 to...Ch. 7.7 - Expand the same functions as in Problems 5.1 to...Ch. 7.7 - Expand the same functions as in Problems 5.1 to...Ch. 7.7 - Expand the same functions as in Problems 5.1 to...Ch. 7.7 - Show that if a real f(x) is expanded in a complex...Ch. 7.7 - If f(x)=12a0+1ancosnx+1bnsinnx=cneinx, use Eulers...Ch. 7.8 - In Problems 5.1 to 5.9, define each function by...Ch. 7.8 - In Problems 5.1 to 5.9, define each function by...Ch. 7.8 - In Problems 5.1 to 5.9, define each function by...Ch. 7.8 - In Problems 5.1 to 5.9, define each function by...Ch. 7.8 - In Problems 5.1 to 5.9, define each function by...Ch. 7.8 - In Problems 5.1 to 5.9, define each function by...Ch. 7.8 - In Problems 5.1 to 5.9, define each function by...Ch. 7.8 - In Problems 5.1 to 5.9, define each function by...Ch. 7.8 - In Problems 5.1 to 5.9, define each function by...Ch. 7.8 - (a) Sketch several periods of the function f(x) of...Ch. 7.8 - In Problems 11 to 14, parts (a) and (b), you are...Ch. 7.8 - In Problems 11 to 14, parts (a) and (b), you are...Ch. 7.8 - In Problems 11 to 14, parts (a) and (b), you are...Ch. 7.8 - In Problems 11 to 14, parts (a) and (b), you are...Ch. 7.8 - Sketch (or computer plot) each of the following...Ch. 7.8 - Each of the following functions is given over one...Ch. 7.8 - Each of the following functions is given over one...Ch. 7.8 - Each of the following functions is given over one...Ch. 7.8 - Each of the following functions is given over one...Ch. 7.8 - Each of the following functions is given over one...Ch. 7.8 - Write out the details of the derivation of the...Ch. 7.9 - The functions in Problems 1 to 3 are neither even...Ch. 7.9 - The functions in Problems 1 to 3 are neither even...Ch. 7.9 - The functions in Problems 1 to 3 are neither even...Ch. 7.9 - The functions in Problems 1 to 3 are neither even...Ch. 7.9 - Each of the functions in Problems 5 to 12 is given...Ch. 7.9 - Each of the functions in Problems 5 to 12 is given...Ch. 7.9 - Each of the functions in Problems 5 to 12 is given...Ch. 7.9 - Each of the functions in Problems 5 to 12 is given...Ch. 7.9 - Each of the functions in Problems 5 to 12 is given...Ch. 7.9 - Each of the functions in Problems 5 to 12 is given...Ch. 7.9 - Each of the functions in Problems 5 to 12 is given...Ch. 7.9 - Each of the functions in Problems 5 to 12 is given...Ch. 7.9 - Give algebraic proofs of (9.3). Hint: Write...Ch. 7.9 - Give algebraic proofs that for even and odd...Ch. 7.9 - Given f(x)=x for 0x1, sketch the even function fc...Ch. 7.9 - Let f(x)=sin2x,0x. Sketch (or computer plot) the...Ch. 7.9 - In Problems 17 to 22 you are given f(x) on an...Ch. 7.9 - In Problems 17 to 22 you are given f(x) on an...Ch. 7.9 - In Problems 17 to 22 you are given f(x) on an...Ch. 7.9 - In Problems 17 to 22 you are given f(x) on an...Ch. 7.9 - In Problems 17 to 22 you are given f(x) on an...Ch. 7.9 - In Problems 17 to 22 you are given f(x) on an...Ch. 7.9 - If a violin string is plucked (pulled aside and...Ch. 7.9 - If, in Problem 23, the string is stopped at the...Ch. 7.9 - Suppose that f(x) and its derivative f(x) are both...Ch. 7.9 - In Problems 26 and 27, find the indicated Fourier...Ch. 7.9 - In Problems 26 and 27, find the indicated Fourier...Ch. 7.10 - In Problems 1 to 3, the graphs sketched represent...Ch. 7.10 - In Problems 1 to 3, the graphs sketched represent...Ch. 7.10 - In Problems 1 to 3, the graphs sketched represent...Ch. 7.10 - In Problems 4 to 10, the sketches show several...Ch. 7.10 - In Problems 4 to 10, the sketches show several...Ch. 7.10 - In Problems 4 to 10, the sketches show several...Ch. 7.10 - In Problems 4 to 10, the sketches show several...Ch. 7.10 - In Problems 4 to 10, the sketches show several...Ch. 7.10 - In Problems 4 to 10, the sketches show several...Ch. 7.10 - In Problems 4 to 10, the sketches show several...Ch. 7.11 - Prove (11.4) for a function of period 2l expanded...Ch. 7.11 - Prove that if f(x)=i=cneinx, then the average...Ch. 7.11 - If f(x) is complex, we usually want the average of...Ch. 7.11 - When a current I flows through a resistance R, the...Ch. 7.11 - Use Parsevals theorem and the results of the...Ch. 7.11 - Use Parsevals theorem and the results of the...Ch. 7.11 - Use Parsevals theorem and the results of the...Ch. 7.11 - Use Parsevals theorem and the results of the...Ch. 7.11 - Use Parsevals theorem and the results of the...Ch. 7.11 - A general form of Parsevals theorem says that if...Ch. 7.11 - Let f(x) on (0,2l) satisfy f(2lx)=f(x), that is,...Ch. 7.12 - Following a method similar to that used in...Ch. 7.12 - Do Example 1 above by using a cosine transform...Ch. 7.12 - In Problems 3 to 12, find the exponential Fourier...Ch. 7.12 - In Problems 3 to 12, find the exponential Fourier...Ch. 7.12 - In Problems 3 to 12, find the exponential Fourier...Ch. 7.12 - In Problems 3 to 12, find the exponential Fourier...Ch. 7.12 - In Problems 3 to 12, find the exponential Fourier...Ch. 7.12 - In Problems 3 to 12, find the exponential Fourier...Ch. 7.12 - In Problems 3 to 12, find the exponential Fourier...Ch. 7.12 - In Problems 3 to 12, find the exponential Fourier...Ch. 7.12 - In Problems 3 to 12, find the exponential Fourier...Ch. 7.12 - In Problems 3 to 12, find the exponential Fourier...Ch. 7.12 - In Problems 13 to 16, find the Fourier cosine...Ch. 7.12 - In Problems 13 to 16, find the Fourier cosine...Ch. 7.12 - In Problems 13 to 16, find the Fourier cosine...Ch. 7.12 - In Problems 13 to 16, find the Fourier cosine...Ch. 7.12 - In Problems 17 to 20, find the Fourier sine...Ch. 7.12 - In Problems 17 to 20, find the Fourier sine...Ch. 7.12 - In Problems 17 to 20, find the Fourier sine...Ch. 7.12 - In Problems 17 to 20, find the Fourier sine...Ch. 7.12 - Find the Fourier transform of f(x)=ex2/22. Hint:...Ch. 7.12 - The function j1()=(cossin)/ is of interest in...Ch. 7.12 - Using Problem 17, show that...Ch. 7.12 - (a) Find the exponential Fourier transform of...Ch. 7.12 - (a) Represent as an exponential Fourier transform...Ch. 7.12 - Using Problem 15, show that 01cos2d=2.Ch. 7.12 - Represent each of the following functions (a) by a...Ch. 7.12 - Represent each of the following functions (a) by a...Ch. 7.12 - Represent each of the following functions (a) by a...Ch. 7.12 - Represent each of the following functions (a) by a...Ch. 7.12 - Verify Parsevals theorem (12.24) for the special...Ch. 7.12 - Verify Parsevals theorem (12.24) for the special...Ch. 7.12 - Verify Parsevals theorem (12.24) for the special...Ch. 7.12 - Show that if (12.2) is written with the factor 1/2...Ch. 7.12 - Starting with the symmetrized integrals as in...Ch. 7.12 - Normalize f(x) in Problem 21; that is find the...Ch. 7.13 - The displacement (from equilibrium) of a particle...Ch. 7.13 - The symbol [x] means the greatest integer less...Ch. 7.13 - We have said that Fourier series can represent...Ch. 7.13 - The diagram shows a relaxation oscillator. The...Ch. 7.13 - Consider one arch of f(x)=sinx. Show that the...Ch. 7.13 - Let f(t)=eit on (,). Expand f(t) in a complex...Ch. 7.13 - Given f(x)=x on (,), expand f(x) in an appropriate...Ch. 7.13 - From facts you know, find in your head the average...Ch. 7.13 - Given f(x)= x,0x1, 2,1x2. (a) Sketch at least...Ch. 7.13 - (a) Sketch at least three periods of the graph of...Ch. 7.13 - Find the three Fourier series in Problems 9 and...Ch. 7.13 - What would be the apparent frequency of a sound...Ch. 7.13 - (a) Given f(x)=(x)/2 on (0,), find the sine series...Ch. 7.13 - (a) Find the Fourier series of period 2 for...Ch. 7.13 - Given f(x)=1,2x0,1,0x2, find the exponential...Ch. 7.13 - Given f(x)=x,0x1,2x,1x2,0,x2, find the cosine...Ch. 7.13 - Show that the Fourier sine transform of x1/2 is...Ch. 7.13 - Let f(x) and g() be a pair of Fourier transforms....Ch. 7.13 - Find the form of Parsevals theorem ( 12.24) for...Ch. 7.13 - Find the exponential Fourier transform of...Ch. 7.13 - Define a function h(x)=k=f(x+2k), assuming that...Ch. 7.13 - Use Poissons formula (Problem 21b) and Problem 20...Ch. 7.13 - Use Parsevals theorem and Problem 12.11 to...
Additional Math Textbook Solutions
Find more solutions based on key concepts
A categorical variable has three categories, with the following frequencies of occurrence: a. Compute the perce...
Basic Business Statistics, Student Value Edition
Identify f as being linear, quadratic, or neither. If f is quadratic, identify the leading coefficient a and ...
College Algebra with Modeling & Visualization (5th Edition)
If n is a counting number, bn, read______, indicates that there are n factors of b. The number b is called the_...
Algebra and Trigonometry (6th Edition)
Fill in each blanks so that the resulting statement is true. Any set of ordered pairs is called a/an _______. T...
College Algebra (7th Edition)
In Exercises 11-20, express each decimal as a percent.
11. 0.59
Thinking Mathematically (6th Edition)
The integrals in Exercises 1-34 converge. Evaluate the integrals without using tables.
1.
University Calculus: Early Transcendentals (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- из Review the deck below and determine its total square footage (add its deck and backsplash square footage together to get the result). Type your answer in the entry box and click Submit. 126 1/2" 5" backsplash A 158" CL 79" B 26" Type your answer here.arrow_forwardRefer to page 311 for a sequence of functions defined on a given interval. Instructions: • Analyze whether the sequence converges pointwise and/or uniformly on the given interval. • Discuss the implications of uniform convergence for integration and differentiation of the sequence. • Provide counterexamples if any condition fails. Link: [https://drive.google.com/file/d/1wKSrun-GlxirS3IZ9qo Hazb9tC440 AZF/view?usp=sharing]arrow_forwardRefer to page 310 for a matrix and its associated system of differential equations. Instructions: • Find the eigenvalues of the given matrix and classify the stability of the system (e.g., stable, • unstable, saddle point). Discuss the geometric interpretation of eigenvalues in the context of system behavior. • Provide conditions under which the system exhibits periodic solutions. Link: [https://drive.google.com/file/d/1wKSrun-GlxirS3IZ9qoHazb9tC440 AZF/view?usp=sharing]arrow_forward
- Refer to page 313 for a nonlinear differential equation and its linear approximation. Instructions: • Linearize the given nonlinear system around the equilibrium points. • Analyze the stability of each equilibrium using the Jacobian matrix and its eigenvalues. • Discuss the limitations of linearization for determining global behavior. Link: [https://drive.google.com/file/d/1wKSrun-GlxirS3IZ9qoHazb9tC440 AZF/view?usp=sharing]arrow_forwardRefer to page 314 for a matrix and its decomposed form. Instructions: • Verify the given singular value decomposition of the matrix. • • Discuss the geometric interpretation of the left and right singular vectors. Use the SVD to analyze the matrix's rank and nullity. Link: [https://drive.google.com/file/d/1wKSrun-GlxirS3IZ9qoHazb9tC440 AZ F/view?usp=sharing]arrow_forwardRefer to page 312 for a set of mappings between two groups G and H. Instructions: • • Verify which of the provided mappings are homomorphisms. Determine the kernel and image of valid homomorphisms and discuss their properties. • State whether the groups are isomorphic, justifying your conclusion. Link: [https://drive.google.com/file/d/1wKSrun-GlxirS3IZ9qo Hazb9tC440 AZF/view?usp=sharing]arrow_forward
- 12:25 AM Sun Dec 22 uestion 6- Week 8: QuX Assume that a company X + → C ezto.mheducation.com Week 8: Quiz i Saved 6 4 points Help Save & Exit Submit Assume that a company is considering purchasing a machine for $50,000 that will have a five-year useful life and a $5,000 salvage value. The machine will lower operating costs by $17,000 per year. The company's required rate of return is 15%. The net present value of this investment is closest to: Click here to view Exhibit 12B-1 and Exhibit 12B-2, to determine the appropriate discount factor(s) using the tables provided. 00:33:45 Multiple Choice О $6,984. $11,859. $22,919. ○ $9,469, Mc Graw Hill 2 100-arrow_forwardNo chatgpt pls will upvotearrow_forward7. [10 marks] Let G = (V,E) be a 3-connected graph. We prove that for every x, y, z Є V, there is a cycle in G on which x, y, and z all lie. (a) First prove that there are two internally disjoint xy-paths Po and P₁. (b) If z is on either Po or P₁, then combining Po and P₁ produces a cycle on which x, y, and z all lie. So assume that z is not on Po and not on P₁. Now prove that there are three paths Qo, Q1, and Q2 such that: ⚫each Qi starts at z; • each Qi ends at a vertex w; that is on Po or on P₁, where wo, w₁, and w₂ are distinct; the paths Qo, Q1, Q2 are disjoint from each other (except at the start vertex 2) and are disjoint from the paths Po and P₁ (except at the end vertices wo, W1, and w₂). (c) Use paths Po, P₁, Qo, Q1, and Q2 to prove that there is a cycle on which x, y, and z all lie. (To do this, notice that two of the w; must be on the same Pj.)arrow_forward
- 6. [10 marks] Let T be a tree with n ≥ 2 vertices and leaves. Let BL(T) denote the block graph of T. (a) How many vertices does BL(T) have? (b) How many edges does BL(T) have? Prove that your answers are correct.arrow_forward4. [10 marks] Find both a matching of maximum size and a vertex cover of minimum size in the following bipartite graph. Prove that your answer is correct. ย ພarrow_forward5. [10 marks] Let G = (V,E) be a graph, and let X C V be a set of vertices. Prove that if |S||N(S)\X for every SCX, then G contains a matching M that matches every vertex of X (i.e., such that every x X is an end of an edge in M).arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Trigonometry (MindTap Course List)TrigonometryISBN:9781305652224Author:Charles P. McKeague, Mark D. TurnerPublisher:Cengage LearningTrigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
- Mathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,Algebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningHolt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGAL
Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781305652224
Author:Charles P. McKeague, Mark D. Turner
Publisher:Cengage Learning
Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,
Algebra and Trigonometry (MindTap Course List)
Algebra
ISBN:9781305071742
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
Holt Mcdougal Larson Pre-algebra: Student Edition...
Algebra
ISBN:9780547587776
Author:HOLT MCDOUGAL
Publisher:HOLT MCDOUGAL
Trigonometry - Harmonic Motion - Equation Setup; Author: David Hays;https://www.youtube.com/watch?v=BPrZnn3DJ6Q;License: Standard YouTube License, CC-BY
Simple Harmonic Motion - An introduction : ExamSolutions Maths Revision; Author: ExamSolutions;https://www.youtube.com/watch?v=tH2vldyP5OE;License: Standard YouTube License, CC-BY