Mathematical Methods in the Physical Sciences
Mathematical Methods in the Physical Sciences
3rd Edition
ISBN: 9780471198260
Author: Mary L. Boas
Publisher: Wiley, John & Sons, Incorporated
bartleby

Videos

Textbook Question
Book Icon
Chapter 7.12, Problem 12P

In Problems 3 to 12, find the exponential Fourier transform of the given f ( x ) and write f ( x ) as a Fourier integral [that is, find g ( α ) in equation ( 12.2 ) and substitute your result into the first integral in equation (12.2)].

f ( x ) = { sin x , | x | < π / 2 0 , | x | > π / 2

Hint: In Problems 11 and 12, use complex exponentials.

Blurred answer
Students have asked these similar questions
For context, the image provided below is a quesion from a Sepetember, 2024 past paper in statistical modeling
For context, the images attached below (the question and the related figure) is from a january 2024 past paper
For context, the image attached below is a question from a June 2024 past paper in statisical modeling

Chapter 7 Solutions

Mathematical Methods in the Physical Sciences

Ch. 7.2 - The charge q on a capacitor in a simple a-c...Ch. 7.2 - RepeatProblem11:(a)ifq=Re4e30it;(b)ifq=Im4e30it.Ch. 7.2 - A simple pendulum consists of a point mass m...Ch. 7.2 - The displacements x of two simple pendulums (see...Ch. 7.2 - As in Problem 14, the displacements x of two...Ch. 7.2 - As in Problem 14, let the displacements be...Ch. 7.2 - Show that equation (2.10) for a wave can be...Ch. 7.2 - In Problems 18 to 20, find the amplitude, period,...Ch. 7.2 - In Problems 18 to 20, find the amplitude, period,...Ch. 7.2 - In Problems 18 to 20, find the amplitude, period,...Ch. 7.2 - Write the equation for a sinusoidal wave of...Ch. 7.2 - Do Problem 21 for a wave of amplitude 4, period 6,...Ch. 7.2 - Write an equation for a sinusoidal sound wave of...Ch. 7.2 - The velocity of sound in sea water is about...Ch. 7.2 - Write an equation for a sinusoidal radio wave of...Ch. 7.3 - For each of the following combinations of a...Ch. 7.3 - For each of the following combinations of a...Ch. 7.3 - For each of the following combinations of a...Ch. 7.3 - For each of the following combinations of a...Ch. 7.3 - Using the definition (end of Section 2) of a...Ch. 7.3 - In Problems 6 and 7, use a trigonometry formula to...Ch. 7.3 - In Problems 6 and 7, use a trigonometry formula to...Ch. 7.3 - A periodic modulated (AM) radio signal has the...Ch. 7.4 - Show that if f(x) has period p, the average value...Ch. 7.4 - (a) Prove that 0/2sin2xdx=0/2cos2xdx by making the...Ch. 7.4 - In Problems 3 to 12, find the average value of the...Ch. 7.4 - In Problems 3 to 12, find the average value of the...Ch. 7.4 - In Problems 3 to 12, find the average value of the...Ch. 7.4 - In Problems 3 to 12, find the average value of the...Ch. 7.4 - In Problems 3 to 12, find the average value of the...Ch. 7.4 - In Problems 3 to 12, find the average value of the...Ch. 7.4 - In Problems 3 to 12, find the average value of the...Ch. 7.4 - In Problems 3 to 12, find the average value of the...Ch. 7.4 - In Problems 3 to 12, find the average value of the...Ch. 7.4 - In Problems 3 to 12, find the average value of the...Ch. 7.4 - Using (4.3) and equations similar to (4.5) to...Ch. 7.4 - Use the results of Problem 13 to evaluate the...Ch. 7.4 - Use the results of Problem 13 to evaluate the...Ch. 7.4 - Use the results of Problem 13 to evaluate the...Ch. 7.5 - In each of the following problems you are given a...Ch. 7.5 - In each of the following problems you are given a...Ch. 7.5 - In each of the following problems you are given a...Ch. 7.5 - In each of the following problems you are given a...Ch. 7.5 - In each of the following problems you are given a...Ch. 7.5 - In each of the following problems you are given a...Ch. 7.5 - In each of the following problems you are given a...Ch. 7.5 - In each of the following problems you are given a...Ch. 7.5 - In each of the following problems you are given a...Ch. 7.5 - In each of the following problems you are given a...Ch. 7.5 - In each of the following problems you are given a...Ch. 7.5 - Show that in (5.2) the average values of...Ch. 7.5 - Write out the details of the derivation of...Ch. 7.6 - For each of the periodic functions in Problems 5.1...Ch. 7.6 - For each of the periodic functions in Problems 5.1...Ch. 7.6 - For each of the periodic functions in Problems 5.1...Ch. 7.6 - For each of the periodic functions in Problems 5.1...Ch. 7.6 - For each of the periodic functions in Problems 5.1...Ch. 7.6 - For each of the periodic functions in Problems 5.1...Ch. 7.6 - For each of the periodic functions in Problems 5.1...Ch. 7.6 - For each of the periodic functions in Problems 5.1...Ch. 7.6 - For each of the periodic functions in Problems 5.1...Ch. 7.6 - For each of the periodic functions in Problems 5.1...Ch. 7.6 - For each of the periodic functions in Problems 5.1...Ch. 7.6 - Use a computer to produce graphs like Fig. 6.2...Ch. 7.6 - Repeat the example using the same Fourier series...Ch. 7.6 - Use Problem 5.7 to show that oddn1/n2=2/8. Try...Ch. 7.6 - UseProblem5.11toshowthat1221+1421+1621+=12.Ch. 7.7 - Expand the same functions as in Problems 5.1 to...Ch. 7.7 - Expand the same functions as in Problems 5.1 to...Ch. 7.7 - Expand the same functions as in Problems 5.1 to...Ch. 7.7 - Expand the same functions as in Problems 5.1 to...Ch. 7.7 - Expand the same functions as in Problems 5.1 to...Ch. 7.7 - Expand the same functions as in Problems 5.1 to...Ch. 7.7 - Expand the same functions as in Problems 5.1 to...Ch. 7.7 - Expand the same functions as in Problems 5.1 to...Ch. 7.7 - Expand the same functions as in Problems 5.1 to...Ch. 7.7 - Expand the same functions as in Problems 5.1 to...Ch. 7.7 - Expand the same functions as in Problems 5.1 to...Ch. 7.7 - Show that if a real f(x) is expanded in a complex...Ch. 7.7 - If f(x)=12a0+1ancosnx+1bnsinnx=cneinx, use Eulers...Ch. 7.8 - In Problems 5.1 to 5.9, define each function by...Ch. 7.8 - In Problems 5.1 to 5.9, define each function by...Ch. 7.8 - In Problems 5.1 to 5.9, define each function by...Ch. 7.8 - In Problems 5.1 to 5.9, define each function by...Ch. 7.8 - In Problems 5.1 to 5.9, define each function by...Ch. 7.8 - In Problems 5.1 to 5.9, define each function by...Ch. 7.8 - In Problems 5.1 to 5.9, define each function by...Ch. 7.8 - In Problems 5.1 to 5.9, define each function by...Ch. 7.8 - In Problems 5.1 to 5.9, define each function by...Ch. 7.8 - (a) Sketch several periods of the function f(x) of...Ch. 7.8 - In Problems 11 to 14, parts (a) and (b), you are...Ch. 7.8 - In Problems 11 to 14, parts (a) and (b), you are...Ch. 7.8 - In Problems 11 to 14, parts (a) and (b), you are...Ch. 7.8 - In Problems 11 to 14, parts (a) and (b), you are...Ch. 7.8 - Sketch (or computer plot) each of the following...Ch. 7.8 - Each of the following functions is given over one...Ch. 7.8 - Each of the following functions is given over one...Ch. 7.8 - Each of the following functions is given over one...Ch. 7.8 - Each of the following functions is given over one...Ch. 7.8 - Each of the following functions is given over one...Ch. 7.8 - Write out the details of the derivation of the...Ch. 7.9 - The functions in Problems 1 to 3 are neither even...Ch. 7.9 - The functions in Problems 1 to 3 are neither even...Ch. 7.9 - The functions in Problems 1 to 3 are neither even...Ch. 7.9 - The functions in Problems 1 to 3 are neither even...Ch. 7.9 - Each of the functions in Problems 5 to 12 is given...Ch. 7.9 - Each of the functions in Problems 5 to 12 is given...Ch. 7.9 - Each of the functions in Problems 5 to 12 is given...Ch. 7.9 - Each of the functions in Problems 5 to 12 is given...Ch. 7.9 - Each of the functions in Problems 5 to 12 is given...Ch. 7.9 - Each of the functions in Problems 5 to 12 is given...Ch. 7.9 - Each of the functions in Problems 5 to 12 is given...Ch. 7.9 - Each of the functions in Problems 5 to 12 is given...Ch. 7.9 - Give algebraic proofs of (9.3). Hint: Write...Ch. 7.9 - Give algebraic proofs that for even and odd...Ch. 7.9 - Given f(x)=x for 0x1, sketch the even function fc...Ch. 7.9 - Let f(x)=sin2x,0x. Sketch (or computer plot) the...Ch. 7.9 - In Problems 17 to 22 you are given f(x) on an...Ch. 7.9 - In Problems 17 to 22 you are given f(x) on an...Ch. 7.9 - In Problems 17 to 22 you are given f(x) on an...Ch. 7.9 - In Problems 17 to 22 you are given f(x) on an...Ch. 7.9 - In Problems 17 to 22 you are given f(x) on an...Ch. 7.9 - In Problems 17 to 22 you are given f(x) on an...Ch. 7.9 - If a violin string is plucked (pulled aside and...Ch. 7.9 - If, in Problem 23, the string is stopped at the...Ch. 7.9 - Suppose that f(x) and its derivative f(x) are both...Ch. 7.9 - In Problems 26 and 27, find the indicated Fourier...Ch. 7.9 - In Problems 26 and 27, find the indicated Fourier...Ch. 7.10 - In Problems 1 to 3, the graphs sketched represent...Ch. 7.10 - In Problems 1 to 3, the graphs sketched represent...Ch. 7.10 - In Problems 1 to 3, the graphs sketched represent...Ch. 7.10 - In Problems 4 to 10, the sketches show several...Ch. 7.10 - In Problems 4 to 10, the sketches show several...Ch. 7.10 - In Problems 4 to 10, the sketches show several...Ch. 7.10 - In Problems 4 to 10, the sketches show several...Ch. 7.10 - In Problems 4 to 10, the sketches show several...Ch. 7.10 - In Problems 4 to 10, the sketches show several...Ch. 7.10 - In Problems 4 to 10, the sketches show several...Ch. 7.11 - Prove (11.4) for a function of period 2l expanded...Ch. 7.11 - Prove that if f(x)=i=cneinx, then the average...Ch. 7.11 - If f(x) is complex, we usually want the average of...Ch. 7.11 - When a current I flows through a resistance R, the...Ch. 7.11 - Use Parsevals theorem and the results of the...Ch. 7.11 - Use Parsevals theorem and the results of the...Ch. 7.11 - Use Parsevals theorem and the results of the...Ch. 7.11 - Use Parsevals theorem and the results of the...Ch. 7.11 - Use Parsevals theorem and the results of the...Ch. 7.11 - A general form of Parsevals theorem says that if...Ch. 7.11 - Let f(x) on (0,2l) satisfy f(2lx)=f(x), that is,...Ch. 7.12 - Following a method similar to that used in...Ch. 7.12 - Do Example 1 above by using a cosine transform...Ch. 7.12 - In Problems 3 to 12, find the exponential Fourier...Ch. 7.12 - In Problems 3 to 12, find the exponential Fourier...Ch. 7.12 - In Problems 3 to 12, find the exponential Fourier...Ch. 7.12 - In Problems 3 to 12, find the exponential Fourier...Ch. 7.12 - In Problems 3 to 12, find the exponential Fourier...Ch. 7.12 - In Problems 3 to 12, find the exponential Fourier...Ch. 7.12 - In Problems 3 to 12, find the exponential Fourier...Ch. 7.12 - In Problems 3 to 12, find the exponential Fourier...Ch. 7.12 - In Problems 3 to 12, find the exponential Fourier...Ch. 7.12 - In Problems 3 to 12, find the exponential Fourier...Ch. 7.12 - In Problems 13 to 16, find the Fourier cosine...Ch. 7.12 - In Problems 13 to 16, find the Fourier cosine...Ch. 7.12 - In Problems 13 to 16, find the Fourier cosine...Ch. 7.12 - In Problems 13 to 16, find the Fourier cosine...Ch. 7.12 - In Problems 17 to 20, find the Fourier sine...Ch. 7.12 - In Problems 17 to 20, find the Fourier sine...Ch. 7.12 - In Problems 17 to 20, find the Fourier sine...Ch. 7.12 - In Problems 17 to 20, find the Fourier sine...Ch. 7.12 - Find the Fourier transform of f(x)=ex2/22. Hint:...Ch. 7.12 - The function j1()=(cossin)/ is of interest in...Ch. 7.12 - Using Problem 17, show that...Ch. 7.12 - (a) Find the exponential Fourier transform of...Ch. 7.12 - (a) Represent as an exponential Fourier transform...Ch. 7.12 - Using Problem 15, show that 01cos2d=2.Ch. 7.12 - Represent each of the following functions (a) by a...Ch. 7.12 - Represent each of the following functions (a) by a...Ch. 7.12 - Represent each of the following functions (a) by a...Ch. 7.12 - Represent each of the following functions (a) by a...Ch. 7.12 - Verify Parsevals theorem (12.24) for the special...Ch. 7.12 - Verify Parsevals theorem (12.24) for the special...Ch. 7.12 - Verify Parsevals theorem (12.24) for the special...Ch. 7.12 - Show that if (12.2) is written with the factor 1/2...Ch. 7.12 - Starting with the symmetrized integrals as in...Ch. 7.12 - Normalize f(x) in Problem 21; that is find the...Ch. 7.13 - The displacement (from equilibrium) of a particle...Ch. 7.13 - The symbol [x] means the greatest integer less...Ch. 7.13 - We have said that Fourier series can represent...Ch. 7.13 - The diagram shows a relaxation oscillator. The...Ch. 7.13 - Consider one arch of f(x)=sinx. Show that the...Ch. 7.13 - Let f(t)=eit on (,). Expand f(t) in a complex...Ch. 7.13 - Given f(x)=x on (,), expand f(x) in an appropriate...Ch. 7.13 - From facts you know, find in your head the average...Ch. 7.13 - Given f(x)= x,0x1, 2,1x2. (a) Sketch at least...Ch. 7.13 - (a) Sketch at least three periods of the graph of...Ch. 7.13 - Find the three Fourier series in Problems 9 and...Ch. 7.13 - What would be the apparent frequency of a sound...Ch. 7.13 - (a) Given f(x)=(x)/2 on (0,), find the sine series...Ch. 7.13 - (a) Find the Fourier series of period 2 for...Ch. 7.13 - Given f(x)=1,2x0,1,0x2, find the exponential...Ch. 7.13 - Given f(x)=x,0x1,2x,1x2,0,x2, find the cosine...Ch. 7.13 - Show that the Fourier sine transform of x1/2 is...Ch. 7.13 - Let f(x) and g() be a pair of Fourier transforms....Ch. 7.13 - Find the form of Parsevals theorem ( 12.24) for...Ch. 7.13 - Find the exponential Fourier transform of...Ch. 7.13 - Define a function h(x)=k=f(x+2k), assuming that...Ch. 7.13 - Use Poissons formula (Problem 21b) and Problem 20...Ch. 7.13 - Use Parsevals theorem and Problem 12.11 to...
Knowledge Booster
Background pattern image
Math
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Discrete Mathematics and Its Applications ( 8th I...
Math
ISBN:9781259676512
Author:Kenneth H Rosen
Publisher:McGraw-Hill Education
Text book image
Mathematics for Elementary Teachers with Activiti...
Math
ISBN:9780134392790
Author:Beckmann, Sybilla
Publisher:PEARSON
Text book image
Calculus Volume 1
Math
ISBN:9781938168024
Author:Strang, Gilbert
Publisher:OpenStax College
Text book image
Thinking Mathematically (7th Edition)
Math
ISBN:9780134683713
Author:Robert F. Blitzer
Publisher:PEARSON
Text book image
Discrete Mathematics With Applications
Math
ISBN:9781337694193
Author:EPP, Susanna S.
Publisher:Cengage Learning,
Text book image
Pathways To Math Literacy (looseleaf)
Math
ISBN:9781259985607
Author:David Sobecki Professor, Brian A. Mercer
Publisher:McGraw-Hill Education
Intro to the Laplace Transform & Three Examples; Author: Dr. Trefor Bazett;https://www.youtube.com/watch?v=KqokoYr_h1A;License: Standard YouTube License, CC-BY