Concept explainers
Experiments show that the pressure drop for flow through an orifice plate of diameter d mounted in a length of pipe of diameter D may be expressed as
Want to see the full answer?
Check out a sample textbook solutionChapter 7 Solutions
Fox And Mcdonald's Introduction To Fluid Mechanics
Additional Engineering Textbook Solutions
Starting Out with Java: From Control Structures through Data Structures (4th Edition) (What's New in Computer Science)
Degarmo's Materials And Processes In Manufacturing
Electric Circuits. (11th Edition)
Java: An Introduction to Problem Solving and Programming (8th Edition)
Introduction To Programming Using Visual Basic (11th Edition)
Database Concepts (8th Edition)
- The pressure drop (Ap) test is carried out using a pipe configuration as illustrated below: Manometer 1 Manometer 2 straight pipe D= 2R R= radius in pipe The pipe data and the flowing fluid are as follows: Pipe: D = 1 cm; L= 100 cm. Fluid: Water, with density (A) = 1000 kg/m"; absolute viscosity (u) = 0.001 kg/im.s); Experimental data is shown as shown in the following table: Task: Ja. Plot the graph of the pressure as a function of the average velocity (V.v). b. Based on the equation for laminar flow in the pipe as follows: Ap = 32VuL, Vavg (m/s) Ap (Pa) 0,001 0,002 0,005 0,01 0,02 0,04 0,06 0,08 0,1 0,12 0,15 0,30 0,62 1,61 3,10 6,10 12,10 20,10 26,00 32,50 38,90 47,20 D Compare the experimental results in the table with the results of calculations using the above equation. Leave a comment. Note: Ap = p1-p2. c. The coefficient of friction (f) in the pipe is formulated as follows: f- 2DAD PL(V.) plot (plot) this distribution of fas a function of the Reynolds number (Re). Re is…arrow_forwardIn the orifice and Jet flow experiment, the following data were collected: Water level = 30 cm , Volume V {V} L was collected in time 32 seconds, orifice diameter = 6 mm, X1 = 50 mm , X2 = 100 mm, X3 = 150 mm, X4 = 200 mm, X5 = 250 mm Y1 = 3 mm, Y2 = 10 mm, Y3 = 22 mm, Y4 = 38 mm, Y5 = 63 mm What is the actual velocity of water jet that leaves the orifice (m/s)?arrow_forwardFluid Mechanics Laboratory (a report on this experiment is required) Experiment No.1 Reynolds number *data ? Please explain the calculation procedure step by steparrow_forward
- Q1: If an air stream flowing at velocity (U) pasta body of length (L) causes a drag force (F) on the body which depends only upon U, L, and fluid viscosity μ. Formulate the suitable dimensionless parameter of the air drag force.arrow_forwardA ship 350 m long moves in sea water whose density is 1030 kg/m3 . A 1:120 model of this ship is to be tested in a wind tunnel. The velocity of the wind tunnel around the model is 35 m/s and the resistance of the model is 65 N. Determine the velocity and also the resistance of the ship in sea water. The density of air is given as 1.24 kg/m3 . Take the kinematic viscosity of air and sea water as 0.012 stokes and 0.018 stokes respectively.arrow_forwardA ship 350 m long moves in sea water whose density is 1030 kg/m3 . A 1:120 model of this ship is to be tested in a wind tunnel. The velocity of the wind tunnel around the model is 35 m/s and the resistance of the model is 65 N. Determine the velocity and also the resistance of the ship in sea water. The density of air is given as 1.24 kg/m3 . Take the kinematic viscosity of air and sea water as 0.012 stokes and 0.018 stokes respectively.arrow_forward
- I need help figuring out this question, I'm at a loss (step by step helps too):arrow_forwardProblems H.pdf > Problems H.W: Lecture No.6 Part 2 Q1-(2.4-4, Holland): A fluid of density (p) and dynamic viscosity (u) flows in s.s in a cylindrical pipe of inside diameter (d) with mean linear velocity (u). Derive an expression for the pressure gradient AP/L in terms of p, u, d & u. By dimensional analysis (Note Lect. No.3). Q2-An oil with a viscosity of u= 0.40 N-s/m and density p= 900 kg/m flows in a pipe of diameter d= 0.20m. (a) What pressure drop, pl-p2, is needed to produce a flowrate of Q=2.0x10-5 m/s if the pipe is horizontal with xl=0 and x2=10 m? (b) How steep a hill, part (a), but with pl=p2? (c) For the conditions of part (b), if pl=200 kPa, what is the pressure at section, x3=5 m, where x is measured along the pipe? „must the pipe be on if the oil is to flow through the pipe at the same rate as in IIarrow_forwardPravinbhaiarrow_forward
- (a) Show that the Weber number is dimensionless: V √o/pL Where is the surface tension, V velocity, p density, and L is length. We = =arrow_forwardVelocity distribution of a fluid in a sliding plate viscometer is used to measure the viscosity of the fluid. The top plate is moving with force (F) with a constant velocity (V) as shown in the Figure below. Force (Ft)= 5 N, Velocity (V) = 10 m/s, Temperature = 100°F. Top plate (Area » Length = 0.1 m and width = 0.05 m spaced by 0.001 m) is moving and the bottom plate is stationary. Determine: The viscosity of the fluid. Which fluid is this? Is this fluid more, or less viscous than water? ● IN FLOW N-Larrow_forward1ODiem # The side thrust F, for a smooth spinning ball in a fluid is a function of the ball diameter D, the free-stream velocity V, the densityp, the viscosityu, and the angular velocity of spino. F= f( D, ρ, μ, V, ω) Using the Buckingham Pi theorem to express this relation in dimensionless form. Farrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY