Fox And Mcdonald's Introduction To Fluid Mechanics
9th Edition
ISBN: 9781118921876
Author: Pritchard, Philip J.; Leylegian, John C.; Bhaskaran, Rajesh
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 7, Problem 45P
An ocean-going vessel is to be powered by a rotating circular cylinder. Model tests are planned to estimate the power required to rotate the prototype cylinder. A dimensional analysis is needed to scale the power requirements from model test results to the prototype. List the parameters that should be included in the dimensional analysis. Perform a dimensional analysis to identify the important dimensionless groups.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Force F is applied at the tip of a cantilever beam of length L and moment of inertia I Fig. . The modulus of elasticity of the beam material is E. When the force is applied, the tip deflection of the beam is z d.Use dimensional analysis to generate a relationship for zd as a function of the independent variables. Name any established dimensionless parameters that appear in your analysis
A tiny aerosol particle of density pp and characteristic diameter Dp falls in air of density p and
viscosity u . If the particle is small enough, the creeping flow approximation is valid, and the
terminal settling speed of the particle V depends only on Dp, µ, gravitational constant g, and
the density difference (pp - p). Use dimensional analysis to generate a relationship for Vas a
function of the independent variables. Name any established dimensionless parameters that
appear in your analysis.
The output power W. of a spinning shaft is a function of torque T and angular velocity ? . Use dimensional analysis to express the relationship between W., T, and ? in dimensionless form. Compare your result to what you know from physics and discuss briefly
Chapter 7 Solutions
Fox And Mcdonald's Introduction To Fluid Mechanics
Ch. 7 - The slope of the free surface of a steady wave in...Ch. 7 - One-dimensional unsteady flow in a thin liquid...Ch. 7 - In atmospheric studies the motion of the earths...Ch. 7 - Fluid fills the space between two parallel plates....Ch. 7 - By using order of magnitude analysis, the...Ch. 7 - Consider a disk of radius R rotating in an...Ch. 7 - An unsteady, two-dimensional, compressible,...Ch. 7 - Experiments show that the pressure drop for flow...Ch. 7 - At very low speeds, the drag on an object is...Ch. 7 - We saw in Chapter 3 that the buoyant force, FB, on...
Ch. 7 - Assume that the velocity acquired by a body...Ch. 7 - Derive by dimensional analysis an expression for...Ch. 7 - The speed of shallow water waves in the ocean...Ch. 7 - The speed, V, of a free-surface wave in shallow...Ch. 7 - The boundary-layer thickness, , on a smooth flat...Ch. 7 - The speed, V, of a free-surface gravity wave in...Ch. 7 - Derive an expression for the velocity of very...Ch. 7 - Derive an expression for the axial thrust exerted...Ch. 7 - Derive an expression for drag force on a smooth...Ch. 7 - The energy released during an explosion, E, is a...Ch. 7 - Measurements of the liquid height upstream from an...Ch. 7 - The load-carrying capacity, W, of a journal...Ch. 7 - Derive an expression for the drag force on a...Ch. 7 - A circular disk of diameter d and of negligible...Ch. 7 - Two cylinders are concentric, the outer one fixed...Ch. 7 - The time, t, for oil to drain out of a viscosity...Ch. 7 - You are asked to find a set of dimensionless...Ch. 7 - A continuous belt moving vertically through a bath...Ch. 7 - Derive an expression for the frictional torque...Ch. 7 - Tests on the established flow of six different...Ch. 7 - The power, P, required to drive a fan is believed...Ch. 7 - The sketch shows an air jet discharging...Ch. 7 - The diameter, d, of bubbles produced by a...Ch. 7 - Choked-flow nozzles are often used to meter the...Ch. 7 - A large tank of liquid under pressure is drained...Ch. 7 - Spin plays an important role in the flight...Ch. 7 - The power loss, P, in a journal bearing depends on...Ch. 7 - The thrust of a marine propeller is to be measured...Ch. 7 - The rate dT/dt at which the temperature T at the...Ch. 7 - When a valve is closed suddenly in a pipe with...Ch. 7 - An airship is to operate at 20 m/s in air at...Ch. 7 - An airplane wing of 3 m chord length moves through...Ch. 7 - A flat plate 1.5 m long and 0.3 m wide is towed at...Ch. 7 - This 1:12 pump model using water at 15C simulates...Ch. 7 - An ocean-going vessel is to be powered by a...Ch. 7 - On a cruise ship, passengers complain about the...Ch. 7 - A 1:3 scale model of a torpedo is tested in a wind...Ch. 7 - A flow rate of 0:18 m3/s of water at 20C...Ch. 7 - A force of 9 N is required to tow a 1:50 ship...Ch. 7 - An airplane wing, with chord length of 1.5 m and...Ch. 7 - A water pump with impeller diameter of 24 in. is...Ch. 7 - A model hydrofoil is to be tested at 1:20 scale....Ch. 7 - A ship 120 m long moves through freshwater at 15C...Ch. 7 - A 1:30 scale model of a cavitating overflow...Ch. 7 - In some speed ranges, vortices are shed from the...Ch. 7 - A 1:8 scale model of a tractor-trailer rig is...Ch. 7 - On a cruise ship, passengers complain about the...Ch. 7 - When a sphere of 0.25 mm diameter and specific...Ch. 7 - The flow about a 150 mm artillery projectile which...Ch. 7 - Your favorite professor likes mountain climbing,...Ch. 7 - A 1:50-scale model of a submarine is to be tested...Ch. 7 - Consider water flow around a circular cylinder, of...Ch. 7 - A 1:10 scale model of a tractor-trailer rig is...Ch. 7 - The power, P, required to drive a fan is assumed...Ch. 7 - Over a certain range of air speeds, V, the lift,...Ch. 7 - The pressure rise, p, of a liquid flowing steadily...Ch. 7 - An axial-flow pump is required to deliver 0.75...Ch. 7 - A model propeller 1 m in diameter is tested in a...Ch. 7 - Consider Problem 7.38. Experience shows that for...Ch. 7 - Closed-circuit wind tunnels can produce higher...Ch. 7 - A 1:16 model of a bus is tested in a wind tunnel...Ch. 7 - The propagation speed of small-amplitude surface...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Please solve this problem, Thank you very much! Figure is attached 1. liquids in rotating cylinders rotates as a rigid body and considered at rest. The elevation difference h between the center of the liquid surface and the rim of the liquid surface is a function of angular velocity ?, fluid density ?, gravitational acceleration ?, and radius ?. Use the method of repeating variables to find a dimensionless relationship between the parameters. Show all the steps.arrow_forwardA liquid of density ? and viscosity ? is pumped at volume flow rate V· through a pump of diameter D. The blades of the pump rotate at angular velocity ? . The pump supplies a pressure rise ΔP to the liquid. Using dimensional analysis, generate a dimensionless relationship for ΔP as a function of the other parameters in the problem. Identify any established nondimensional parameters that appear in your result. Hint: For consistency (and whenever possible), it is wise to choose a length, a density, and a velocity (or angular velocity) as repeating variables.arrow_forwardThe speed of sound c in an ideal gas is known to be a function of the ratio of specific heats k, absolute temperature T, and specific ideal gas constant Rgas. Showing all your work, use dimensional analysis to find the functional relationship between these parameters.arrow_forward
- When a fluid flows slowly past a vertical plate of height h and width b, pressure develops on the face of the plate. Assume that the pressure, p, at the midpoint of the plate is a function of plate height and width, the approach velocity V, and the fluid viscosity u and fluid density p. Make use of dimensional analysis to determine how the pressure, p will be formed with a dimensionless group. (Take b, V. p as repeating variables). Select one: O a. n1 = p /V² p O b. n1 = p/Ve O c.n1 = p/Vp? O d. 11 = p/V² p²arrow_forwardA tiny aerosol particle of density ?p and characteristic diameter Dp falls in air of density ? and viscosity ?. If the particle is small enough, the creeping flow approximation is valid, and the terminal settling speed of the particle V depends only on Dp, ? , gravitational constant g, and the density difference (?p − ? ). Use dimensional analysis to generate a relationship for V as a function of the independent variables. Name any established dimensionless parameters that appear in your analysis.arrow_forward(a) Discuses three necessary conditions for complete similarity between a model and a prototype in dimensional analysis. (b) In the design and development competition in a University, a team of students has planned to develop a prototype of submarine that would travel fully submerged at a certain speed in a fresh lake water. The team has designed a model which has one-sixth of a prototype size to test in the university wind tunnel to study the effect of various parameters.What will happen to the length of the model if the temperature of the blowing wind increases as a result of the season change in summer compared to winter?Considering the necessary assumptions discuss the reason.arrow_forward
- Dimensional analysis is to be used to correlate data on bubble size with the properties of the liquid when gas bubbles are formed by a gas issuing from a small orifice below the liquid surface. Assume that the significant variables are bubble diameter D, orifice diameter d, liquid density rho, surface tension sigma (in N/m), liquid viscosity mu, and g. Select d, rho, and g as the core variables.arrow_forwardThe radius R of a mushroom cloud generated by a nuclear bomb grows in time. We expect that R is a function of time t, initial energy of the explosion E, and average air density ? . Use dimensional analysis to express the relationship between R, t, E, and ? in dimensionless form.arrow_forwardi need the answer quicklyarrow_forward
- 3. The radius R of a mushroom cloud generated by a nuclear bomb grows in time. We expect that R is a function of time t, initial energy of the explosion E, and average air density p. Use dimensional analysis to express the relationship between R, t, E, and p in dimensionless form.arrow_forwardThe power P generated by a certain windmill design depends upon its diameter D, the air density p, the wind velocity V, the rotation rate 0, and the number of blades n. (a) Write this relationship in dimensionless form. A model windmill, of diameter 50 cm, develops 2.7 kW at sea level when V= 40 m/s and when rotating at 4800 r/min. (b) What power will be developed by a geometrically and dynamically similar prototype, of diameter 5 m, in winds of 12 m/s at 2000 m standard altitude? (c) What is the appropriate rotation rate of the prototype?arrow_forwardWhen a capillary tube of small diameter D is inserted into a container of liquid, the liquid rises to height h inside the tube (Fig.). h is a function of liquid density ? , tube diameter D, gravitational constant g, contact angle ?, and the surface tension ?s of the liquid. (a) Generate a dimensionless relationship for h as a function of the given parameters. (b) Compare your result to the exact analytical equation for h. Are your dimensional analysis results consistent with the exact equation? Discuss.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Unit Conversion the Easy Way (Dimensional Analysis); Author: ketzbook;https://www.youtube.com/watch?v=HRe1mire4Gc;License: Standard YouTube License, CC-BY