Fox And Mcdonald's Introduction To Fluid Mechanics
9th Edition
ISBN: 9781118921876
Author: Pritchard, Philip J.; Leylegian, John C.; Bhaskaran, Rajesh
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 7, Problem 57P
On a cruise ship, passengers complain about the amount of smoke that becomes entrained behind the cylindrical smoke stack. You have been hired to study the flow pattern around the stack, and have decided to use a 1:15 scale model of the 15-ft smoke stack. What range of wind tunnel speeds could you use if the ship speed for which the problem occurs is 12 to 24 knots?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A road haulage truck has an approximate rectangular frontal area 2.5 m wide
by 3.8 m high. To investigate the drag on the truck, a one – fifth scale model
is to be tested in a wind tunnel. We can assume that the density and viscosity
of the air are the same for the model as for the full size truck. If the truck
travels at 120 km/h, what is the appropriate air speed for the model in the
wind tunnel?
A student team is to design a human-powered submarine for a design competition. The overall length of the prototype submarine is 95 (m), and its student designers hope that it can travel fully submerged through water at 0.440 m/s. The water is freshwater (a lake) at T = 15°C. The design team builds a one-fifth scale model to test in their university’s wind tunnel. A shield surrounds the drag balance strut so that the aerodynamic drag of the strut itself does not influence the measured drag. The air in the wind tunnel is at 25°C and at one standard atmosphere pressure. At what air speed do they need to run the wind tunnel in order to achievesimilarity?
A student team is to design a submarine for a design competition. The overall
length of the prototype submarine is 4.85 m. The prototype submarine is
expected to moves through freshwater in the lake at 0.440 m/s. The student team
builds a one-fifth scale model to test in their university's wind tunnel. Calculate
the wind tunnel air speed in order to achieve similarity with the prototype
submarine. For water at T= 15 °C and atmospheric pressure, the density is p =
999.1 kg/m³ and the dynamic viscosity is µ = 1.138 x 10³ kg/m-s. For air in the
wind tunnel at T= 25 °C and atmospheric pressure, the density is p= 1.184 kg/m³
and the dynamic viscosity is µ = 1.849 x 10-$ kg/m's.
Chapter 7 Solutions
Fox And Mcdonald's Introduction To Fluid Mechanics
Ch. 7 - The slope of the free surface of a steady wave in...Ch. 7 - One-dimensional unsteady flow in a thin liquid...Ch. 7 - In atmospheric studies the motion of the earths...Ch. 7 - Fluid fills the space between two parallel plates....Ch. 7 - By using order of magnitude analysis, the...Ch. 7 - Consider a disk of radius R rotating in an...Ch. 7 - An unsteady, two-dimensional, compressible,...Ch. 7 - Experiments show that the pressure drop for flow...Ch. 7 - At very low speeds, the drag on an object is...Ch. 7 - We saw in Chapter 3 that the buoyant force, FB, on...
Ch. 7 - Assume that the velocity acquired by a body...Ch. 7 - Derive by dimensional analysis an expression for...Ch. 7 - The speed of shallow water waves in the ocean...Ch. 7 - The speed, V, of a free-surface wave in shallow...Ch. 7 - The boundary-layer thickness, , on a smooth flat...Ch. 7 - The speed, V, of a free-surface gravity wave in...Ch. 7 - Derive an expression for the velocity of very...Ch. 7 - Derive an expression for the axial thrust exerted...Ch. 7 - Derive an expression for drag force on a smooth...Ch. 7 - The energy released during an explosion, E, is a...Ch. 7 - Measurements of the liquid height upstream from an...Ch. 7 - The load-carrying capacity, W, of a journal...Ch. 7 - Derive an expression for the drag force on a...Ch. 7 - A circular disk of diameter d and of negligible...Ch. 7 - Two cylinders are concentric, the outer one fixed...Ch. 7 - The time, t, for oil to drain out of a viscosity...Ch. 7 - You are asked to find a set of dimensionless...Ch. 7 - A continuous belt moving vertically through a bath...Ch. 7 - Derive an expression for the frictional torque...Ch. 7 - Tests on the established flow of six different...Ch. 7 - The power, P, required to drive a fan is believed...Ch. 7 - The sketch shows an air jet discharging...Ch. 7 - The diameter, d, of bubbles produced by a...Ch. 7 - Choked-flow nozzles are often used to meter the...Ch. 7 - A large tank of liquid under pressure is drained...Ch. 7 - Spin plays an important role in the flight...Ch. 7 - The power loss, P, in a journal bearing depends on...Ch. 7 - The thrust of a marine propeller is to be measured...Ch. 7 - The rate dT/dt at which the temperature T at the...Ch. 7 - When a valve is closed suddenly in a pipe with...Ch. 7 - An airship is to operate at 20 m/s in air at...Ch. 7 - An airplane wing of 3 m chord length moves through...Ch. 7 - A flat plate 1.5 m long and 0.3 m wide is towed at...Ch. 7 - This 1:12 pump model using water at 15C simulates...Ch. 7 - An ocean-going vessel is to be powered by a...Ch. 7 - On a cruise ship, passengers complain about the...Ch. 7 - A 1:3 scale model of a torpedo is tested in a wind...Ch. 7 - A flow rate of 0:18 m3/s of water at 20C...Ch. 7 - A force of 9 N is required to tow a 1:50 ship...Ch. 7 - An airplane wing, with chord length of 1.5 m and...Ch. 7 - A water pump with impeller diameter of 24 in. is...Ch. 7 - A model hydrofoil is to be tested at 1:20 scale....Ch. 7 - A ship 120 m long moves through freshwater at 15C...Ch. 7 - A 1:30 scale model of a cavitating overflow...Ch. 7 - In some speed ranges, vortices are shed from the...Ch. 7 - A 1:8 scale model of a tractor-trailer rig is...Ch. 7 - On a cruise ship, passengers complain about the...Ch. 7 - When a sphere of 0.25 mm diameter and specific...Ch. 7 - The flow about a 150 mm artillery projectile which...Ch. 7 - Your favorite professor likes mountain climbing,...Ch. 7 - A 1:50-scale model of a submarine is to be tested...Ch. 7 - Consider water flow around a circular cylinder, of...Ch. 7 - A 1:10 scale model of a tractor-trailer rig is...Ch. 7 - The power, P, required to drive a fan is assumed...Ch. 7 - Over a certain range of air speeds, V, the lift,...Ch. 7 - The pressure rise, p, of a liquid flowing steadily...Ch. 7 - An axial-flow pump is required to deliver 0.75...Ch. 7 - A model propeller 1 m in diameter is tested in a...Ch. 7 - Consider Problem 7.38. Experience shows that for...Ch. 7 - Closed-circuit wind tunnels can produce higher...Ch. 7 - A 1:16 model of a bus is tested in a wind tunnel...Ch. 7 - The propagation speed of small-amplitude surface...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
What data type do you use when you want to create a file stream object that can read data from a file?
Starting Out with C++ from Control Structures to Objects (9th Edition)
Explain why SQL is called a set-oriented language.
Modern Database Management
Compute the weakest precondition for each of the following assignment statements and postconditions: a. a = 2 ...
Concepts Of Programming Languages
What is the importance of modeling in engineering? How are the mathematical models for engineering processes pr...
HEAT+MASS TRANSFER:FUND.+APPL.
Describe the purpose of the access key attribute and how it supports accessibility.
Web Development and Design Foundations with HTML5 (8th Edition)
In the following exercises, write a program to carry out the task. The program should use variables for each of...
Introduction To Programming Using Visual Basic (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- (a) A model low speed centrifugal compressor (a “blower") runs at 430 rpm and delivers 10 m/s of air against a pressure head of 60 mm of water. If the pump efficiency is estimated to be 80%, how much power is required to drive the compressor? (b) A geometrically similar compressor is made with a diameter 1.8 times the size of the model and is required to work against a pressure head of 80 mm of water. Determine the operating speed and the power needed to drive the compressor assuming dynamically similar condi- tions apply.arrow_forwardSome students want to visualize flow over a spinning baseball. Their fluids laboratory has a nice water tunnel into which they can inject multicolored dye streaklines, so they decide to test a spinning baseball in the water tunnel. Similarity requires that they match both the Rey n olds number and the Strouhal number between their model test and the actual baseball that moves through the air at 90 mi/h and spins at 300 rpm. Both the air and the water are at 68°F. At what speed should they run the water in the water tunnel, and at what rpm should they spin their baseball?arrow_forwardA student needs to measure the drag on a prototype of characteristic length d, moving at velocity U, in air at sea-level conditions. She constructs a model of characteristic length dm such that the ratio d,/dm drag under dynamically similar conditions in sea-level air. The student claims that the drag force on the prototype will be = a factor f. She then measures the model identical to that of the model. Is her claim correct? Explain, showing your work (no credit for just guessing).arrow_forward
- A 1:7 scale model simulates the operation of alarge turbine that is to generate 200 kW with a flowrate of 1.5 m3/s.What flow rate should be used inthe model, and what power output is expected?(a) Water at the same temperature is used in bothmodel and prototype.(b) The model water is at 25°C and the prototypewater is at 10°C.arrow_forwardWe want to predict the drag force on a remote-control airplane as it flies through air having a density of 1.21 kg/m³ and a viscosity of 1.76x10- Pa-s. The airplane's fuselage has a diameter of 200 mm and the airplane will fly through air at a speed of 32 m/s. A model of the airplane's fuselage will be tested in a pressurized wind tunnel. The diameter of the model is 75 mm and the density and viscosity of the air in the wind tunnel are 3.00 kg/m³ and 1.82× 10-5 Pa-s, respectively. a) The diameter of the airplane's fuselage will be used to define the Reynolds number Re, for the flow around the fuselage. Compute the Reynolds number for the flow around the airplane's fuselage (answer: Re, = 4.40x 10'). b) Find the speed of the air that should be used to test a model of the fuselage in the wind tunnel to correctly model dynamic conditions (answer: 35.6 m/s). c) The model is tested in the wind tunnel at four speeds that bracket the speed computed above. The measured drag forces on the…arrow_forwardInside a ship building R&D center, a model of a ship was to be put under experimental analysis, for estimating its wave drag. If the speed the actual full scale ship is 1 m/s, then at what speed must be model must be tested?arrow_forward
- A student wants to estimate drag force on a golf ball of diameter D moving in air at a speed of U at atmospheric conditions. The student has access to a wind-tunnel and develops a replica of the ball that is 5 times smaller in diameter sets the wind speed 5 times larger than the actual golf ball. Compared to the force on the replica, the estimated drag force on the actual golf ball will bearrow_forwardThe aerodynamic drag of a new sports car is to be predicted at a speed of 60.0 mi/h at an air temperature of 25°C. Automotive engineers build a one-third scale model of the car to test in a wind tunnel. The temperature of the wind tunnel air is also 25°C. The drag force is measured with a drag balance, and the moving belt is used to simulate the moving ground (from the car’s frame of reference). Determine how fast the engineers should run the wind tunnel to achieve similarity between the model and the prototype.arrow_forwardThe aerodynamic drag of a new sports car is to be predicted at a speed of 60.0 mi/h at an air temperature of 25°C. Automotive engineers build a one-third scale model of the car to test in a wind tunnel. The temperature of the wind tunnel air is also 25°C. The drag force is measured with a drag balance, and the moving belt is used to simulate the moving ground (from the car’s frame of reference). Determine how fast the engineers should run the wind tunnel to achieve similarity between the model and the prototype.arrow_forward
- X = 1arrow_forwardIn the design and development competition in a University, a team of students has planned to develop a prototype submarine with 6.5 meter length that would travel fully submerged at X m/s speed in a fresh lake water. The team has designed a model which has one-sixth of a prototype size to test in the university wind tunnel to study the effect of various parameters, such as drag force on the prototype (Figure Q2). Considering the necessary assumptions (a) determine the speed of the wind the team has to blow into the tunnel in order to achieve similarity. (b) With all the same conditions the team change their mind and want to develop a smaller size of model to save money and time. Targeting the maximum acceptable speed of the air blown not to exceed 125 m/s to avoid compressibility of air, what should be the minimum length of the model? (c) What will happen to the length of the model if the temperature of the blowing wind increases as a result of the season change? Discuss the reason.arrow_forwardA 1:20 scaled-down model of a hydrofoil is tested in a water channel, at a velocity of 0.179 m/s. At this velocity, a drag force of 2.2 N is measured. Determine the drag force of the original hydrofoil, at a velocity of 0.8 m/s.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Unit Conversion the Easy Way (Dimensional Analysis); Author: ketzbook;https://www.youtube.com/watch?v=HRe1mire4Gc;License: Standard YouTube License, CC-BY