Fox And Mcdonald's Introduction To Fluid Mechanics
9th Edition
ISBN: 9781118921876
Author: Pritchard, Philip J.; Leylegian, John C.; Bhaskaran, Rajesh
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 7, Problem 17P
Derive an expression for the velocity of very small ripples on the surface of a liquid if this velocity depends only on ripple length and density and surface tension of the liquid.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Please help me to answer these questions by today. Please try to explain it in details sothat I can understand.
The slope of the height h of a surface wave moving in a shallow pool of liquid is related to the
speed of the wave u and gravity g by the following equation
и ди
дх
g əx
(a) Use a length scale L and a velocity scale Vo to 'nondimensionalize' the equation
(b) What is the nondimensional parameter of the flow?
The true option
Chapter 7 Solutions
Fox And Mcdonald's Introduction To Fluid Mechanics
Ch. 7 - The slope of the free surface of a steady wave in...Ch. 7 - One-dimensional unsteady flow in a thin liquid...Ch. 7 - In atmospheric studies the motion of the earths...Ch. 7 - Fluid fills the space between two parallel plates....Ch. 7 - By using order of magnitude analysis, the...Ch. 7 - Consider a disk of radius R rotating in an...Ch. 7 - An unsteady, two-dimensional, compressible,...Ch. 7 - Experiments show that the pressure drop for flow...Ch. 7 - At very low speeds, the drag on an object is...Ch. 7 - We saw in Chapter 3 that the buoyant force, FB, on...
Ch. 7 - Assume that the velocity acquired by a body...Ch. 7 - Derive by dimensional analysis an expression for...Ch. 7 - The speed of shallow water waves in the ocean...Ch. 7 - The speed, V, of a free-surface wave in shallow...Ch. 7 - The boundary-layer thickness, , on a smooth flat...Ch. 7 - The speed, V, of a free-surface gravity wave in...Ch. 7 - Derive an expression for the velocity of very...Ch. 7 - Derive an expression for the axial thrust exerted...Ch. 7 - Derive an expression for drag force on a smooth...Ch. 7 - The energy released during an explosion, E, is a...Ch. 7 - Measurements of the liquid height upstream from an...Ch. 7 - The load-carrying capacity, W, of a journal...Ch. 7 - Derive an expression for the drag force on a...Ch. 7 - A circular disk of diameter d and of negligible...Ch. 7 - Two cylinders are concentric, the outer one fixed...Ch. 7 - The time, t, for oil to drain out of a viscosity...Ch. 7 - You are asked to find a set of dimensionless...Ch. 7 - A continuous belt moving vertically through a bath...Ch. 7 - Derive an expression for the frictional torque...Ch. 7 - Tests on the established flow of six different...Ch. 7 - The power, P, required to drive a fan is believed...Ch. 7 - The sketch shows an air jet discharging...Ch. 7 - The diameter, d, of bubbles produced by a...Ch. 7 - Choked-flow nozzles are often used to meter the...Ch. 7 - A large tank of liquid under pressure is drained...Ch. 7 - Spin plays an important role in the flight...Ch. 7 - The power loss, P, in a journal bearing depends on...Ch. 7 - The thrust of a marine propeller is to be measured...Ch. 7 - The rate dT/dt at which the temperature T at the...Ch. 7 - When a valve is closed suddenly in a pipe with...Ch. 7 - An airship is to operate at 20 m/s in air at...Ch. 7 - An airplane wing of 3 m chord length moves through...Ch. 7 - A flat plate 1.5 m long and 0.3 m wide is towed at...Ch. 7 - This 1:12 pump model using water at 15C simulates...Ch. 7 - An ocean-going vessel is to be powered by a...Ch. 7 - On a cruise ship, passengers complain about the...Ch. 7 - A 1:3 scale model of a torpedo is tested in a wind...Ch. 7 - A flow rate of 0:18 m3/s of water at 20C...Ch. 7 - A force of 9 N is required to tow a 1:50 ship...Ch. 7 - An airplane wing, with chord length of 1.5 m and...Ch. 7 - A water pump with impeller diameter of 24 in. is...Ch. 7 - A model hydrofoil is to be tested at 1:20 scale....Ch. 7 - A ship 120 m long moves through freshwater at 15C...Ch. 7 - A 1:30 scale model of a cavitating overflow...Ch. 7 - In some speed ranges, vortices are shed from the...Ch. 7 - A 1:8 scale model of a tractor-trailer rig is...Ch. 7 - On a cruise ship, passengers complain about the...Ch. 7 - When a sphere of 0.25 mm diameter and specific...Ch. 7 - The flow about a 150 mm artillery projectile which...Ch. 7 - Your favorite professor likes mountain climbing,...Ch. 7 - A 1:50-scale model of a submarine is to be tested...Ch. 7 - Consider water flow around a circular cylinder, of...Ch. 7 - A 1:10 scale model of a tractor-trailer rig is...Ch. 7 - The power, P, required to drive a fan is assumed...Ch. 7 - Over a certain range of air speeds, V, the lift,...Ch. 7 - The pressure rise, p, of a liquid flowing steadily...Ch. 7 - An axial-flow pump is required to deliver 0.75...Ch. 7 - A model propeller 1 m in diameter is tested in a...Ch. 7 - Consider Problem 7.38. Experience shows that for...Ch. 7 - Closed-circuit wind tunnels can produce higher...Ch. 7 - A 1:16 model of a bus is tested in a wind tunnel...Ch. 7 - The propagation speed of small-amplitude surface...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
Write an evaluation of some programming language you know, using the criteria described in this chapter.
Concepts Of Programming Languages
Write a program that inputs a date (for example, July 4, 2008) and outputs the day of the week that corresponds...
Problem Solving with C++ (10th Edition)
Investigate and summarize some of the important metallurgical considerations when attempting to join each of th...
Degarmo's Materials And Processes In Manufacturing
True or False: To find the classes needed for an object-oriented application, you identify all of the verbs in ...
Starting Out with Java: From Control Structures through Objects (7th Edition) (What's New in Computer Science)
_____ is human-readable code that looks similar to programming language code.
Starting Out With Visual Basic (8th Edition)
Property Tax A county collects property taxes on the assessment value of property, which is 60 percent of the p...
Starting Out with Python (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- B9arrow_forward#4 1.11 For a small particle of styrofoam (1 lbm/ft) (spherical, with diameter d = 0.3 mm) falling in standard air at speed V, the drag is given by FD-3mVd, where is the air viscosity. Find the maximum speed starting from rest, and the time it takes to reach 95 percent of this speed. Plot the speed as a function of time. s) Answer: (Vmax=0.0435",t=0.0133 Sarrow_forwardA seA A, soA A solid cylinder of diameter d, length and density p, falls due to gravity inside a pipe of diameter D. The clearance between the solid cylinder and the pipe is filled with a Newtonian fluid of density p and u. For this clearance fluid, the terminal velocity of the cylinder is determined to be V, assuming a linear velocity profile. However, if the clearance fluid was changed to a Newtonian fluid of density 2p and viscosity 2u, then for an assumed linear velocity profile, the terminal velocity of the cylinder was determined to be V,. From the results of these experiments, one may write that (A) V = V (C) 2 V= V (B) V=2 V, (D) V= 4 Varrow_forward
- The velocity distribution in a 0.02 m diameter horizontal pipe conveying carbon tetrachloride (specific gravity = 1.59, absolute viscosity = 9.6 x 10-6 Pa sec) is given by the parabolic equation: v(r)=0.01(0.12- r?), where v(r) is the velocity in (m/s) at a distance r in (m) from the pipe center. What is discharge? O a. 3.13 x-8 m3/s O b. None of the mentioned O c. 1.047 x 108 m3/sec O d. 4.97 x 109 m3/secarrow_forwardFluid mechanics Iarrow_forwardYou are given the velocity profile within a thin layer of liquid, draining from an inclined plane as vx = v0 (ay/h − y2/h2), where v0 is the surface velocity and a is a constant that needs to be determined. The height of the liquid film h = 2 cm and the flow rate is 1.8liters/minute. The plane has width 10 cm into the paper.(i). Determine the constant a by applying a suitable boundary condition at y = h.arrow_forward
- The pressure in a water tower is 27,030 Pascals (N / (m ^ 2)) higher than at an open faucet. The density of water is 1000Kg / (m ^ 3). Use Bernoulli's equation to determine the velocity of outflow from the open faucet. the height difference between the top water level in the tower and the faucet is 9 meters, then the velocity of outflow isarrow_forwardHW1.1: Equation 2.7 in the text provides the velocity profile, u(y) for a narrow, infinitely long, slit-like microchannel. Use the no-slip boundary conditions (channel walls not moving) to obtain 1 dp - hy} 2n dx the standard solution, u(y)= For an incompressible, Newtonian fluid, with fluid properties as described in the text, shear stress du is typically given by t =n· dy Write-out an expression for the shear stress as a function of y. Calculate shear stress at: (a) y = 0; (b) y = h; and (c) y = h/2.arrow_forward2. The apparatus shown below is designed to measure the density of an unknown fluid (p2₂). The two sides of the device are separated by a movable, frictionless partition. The partition is attached to the immobile sidewalls of the device via springs (different spring constants) on either side. Before pouring fluid into the device, both springs are unstretched. The device has a rectangular cross-section and extends a width w into the page. Derive an expression for the unknown density p2 = f(p1, h₁, h₂, k₁, k2, Ax, g), where Ar is the displacement of the partition relative to its equilibrium location before the fluids are poured into the apparatus. h₁ P1 k₁ 5 P2 ли Ax k₂ h₂arrow_forward
- An incompressible fluid flows in a linear porous medium with the following properties: Lenth = 3000 ft k = 100 md p1 = 2000 psig p2 = 1980 psig height = 25 ft porosity = 20% width = 300 ft viscosity = 2 cP Assume the dimension is slanted, i.e., a dip angle of 5 degrees (downward from p1 location to p2 location), what is the apparent fluid velocity under this new boundary condition?arrow_forwardWhen a person ice skates, the surface of the ice actuallymelts beneath the blades, so that he or she skates on a thinsheet of water between the blade and the ice.( a ) Find an expression for total friction force on the bottomof the blade as a function of skater velocity V , bladelength L , water thickness (between the blade and theice) h , water viscosity μ , and blade width W .( b ) Suppose an ice skater of total mass m is skatingalong at a constant speed of V 0 when she suddenlystands stiff with her skates pointed directly forward,allowing herself to coast to a stop. Neglecting frictiondue to air resistance, how far will she travelbefore she comes to a stop? (Remember, she iscoasting on two skate blades.) Give your answer forthe total distance traveled, x , as a function of V 0 , m ,L , h , μ , and W .( c ) Find x for the case where V 0 = 4.0 m/s, m = 100 kg,L = 30 cm, W = 5.0 mm, and h = 0.10 mm. Do youthink our assumption of negligible air resistance is agood one?arrow_forwardfluid mechanics- vorticesarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Properties of Fluids: The Basics; Author: Swanson Flo;https://www.youtube.com/watch?v=TgD3nEO1iCA;License: Standard YouTube License, CC-BY
Fluid Mechanics-Lecture-1_Introduction & Basic Concepts; Author: OOkul - UPSC & SSC Exams;https://www.youtube.com/watch?v=6bZodDnmE0o;License: Standard Youtube License