MICROELECT. CIRCUIT ANALYSIS&DESIGN (LL)
4th Edition
ISBN: 9781266368622
Author: NEAMEN
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Question
Chapter 7, Problem 7.67P
a.
To determine
Equivalent miller capacitance
b.
To determine
Upper 3 dB frequency and mid band voltage gain.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Q5.
In the circuit in Figure P7.65, the transistor parameters are: B = 120,
VBE (on) = 0.7 V, VA = 100 V, C, = 1 pF, and fr = 600 MHz. (a) Deter-
mine C and the equivalent Miller capacitance CM. State any approxima-
tions or assumptions that you make. (b) Find the upper 3 dB frequency and
the midband voltage gain.
+5 V
Rc=4 k2
R = 33 k2
HH
Cc2 = 2 µF
CCi = 1 µF
wwH
Rs=2 kQ
RL =
5 k2
R2 = 22 kO
RE=
4 k2
CE=
10 µF
Figure P7.65
7.65 In the circuit in Figure P7.65, the transistor parameters are: B = 120,
VBE(on) = 0.7 V, VA = 100 V, C, = 1 pF, and fr = 600 MHz. (a) Deter-
mine C, and the equivalent Miller capacitance Cy. State any approxima-
tions or assumptions that you make. (b) Find the upper 3 dB frequency and
the midband voltage gain.
+5 V
Rc-4 k2
R= 33 k2
Ccz =2 AF
CCi =1 uF
wwwHE
Rg = 2 ka
35 k2
R2= 22 ka
4 ks2
ww
ww
ww
7.65 In the circuit in Figure P7.65, the transistor parameters are: B = 120,
VBE(on) = 0.7 V, VA = 100 V, C, = 1 pF, and fr = 600 MHz. (a) Deter-
mine C, and the equivalent Miller capacitance CM. State any approxima-
tions or assumptions that you make. (b) Find the upper 3 dB frequency and
the midband voltage gain.
Rc=D4 k2
R = 33 k2
C =1 uF
Cc2 = 2 µF
Rg = 2 k2
R =
5 ka
R2 = 22 k2
Rg%3D
4 k2
Cg =
10 uF
Figure P7.65
ww
Chapter 7 Solutions
MICROELECT. CIRCUIT ANALYSIS&DESIGN (LL)
Ch. 7 - (a) For the circuit shown in Figure 7.2, the...Ch. 7 - The circuit shown in Figure 7.10 has parameters of...Ch. 7 - For the equivalent circuit shown in Figure 7.13,...Ch. 7 - The equivalent circuit in Figure 7.14 has circuit...Ch. 7 - The parameters in the circuit shown in Figure 7.15...Ch. 7 - For the circuit shown in Figure 7.2 1(a), the...Ch. 7 - Consider the circuit shown in Figure 7.22(a). The...Ch. 7 - For the emitterfollower circuit shown in Figure...Ch. 7 - The circuit shown in Figure 7.27(a) has parameters...Ch. 7 - Consider the common-base circuit shown in Figure...
Ch. 7 - The commonemitter circuit shown in Figure 7.34...Ch. 7 - A bipolar transistor has parameters o=120 ,...Ch. 7 - Prob. 7.9EPCh. 7 - For the circuit in Figure 7.41(a), the parameters...Ch. 7 - A bipolar transistor is biased at ICQ=120A and its...Ch. 7 - For the transistor described in Example 7.9 and...Ch. 7 - The parameters of a bipolar transistor are: o=150...Ch. 7 - The parameters of an nchannel MOSFET are...Ch. 7 - For the circuit in Figure 7.55, the transistor...Ch. 7 - An nchannel MOSFET has parameters Kn=0.4mA/V2 ,...Ch. 7 - An nchannel MOSFET has a unitygain bandwidth of...Ch. 7 - For a MOSFET, assume that gm=1.2mA/V . The basic...Ch. 7 - The transistor in the circuit in Figure 7.60 has...Ch. 7 - Consider the commonbase circuit in Figure 7.64....Ch. 7 - The cascode circuit in Figure 7.65 has parameters...Ch. 7 - Prob. 7.12TYUCh. 7 - For the circuit in Figure 7.72, the transistor...Ch. 7 - Describe the general frequency response of an...Ch. 7 - Describe the general characteristics of the...Ch. 7 - Describe what is meant by a system transfer...Ch. 7 - What is the criterion that defines a corner, or...Ch. 7 - Describe what is meant by the phase of the...Ch. 7 - Describe the time constant technique for...Ch. 7 - Describe the general frequency response of a...Ch. 7 - Sketch the expanded hybrid model of the BJT.Ch. 7 - Prob. 9RQCh. 7 - Prob. 10RQCh. 7 - Prob. 11RQCh. 7 - Sketch the expanded smallsignal equivalent circuit...Ch. 7 - Define the cutoff frequency for a MOSFET.Ch. 7 - Prob. 14RQCh. 7 - Why is there not a Miller effect in a commonbase...Ch. 7 - Describe the configuration of a cascode amplifier.Ch. 7 - Why is the bandwidth of a cascode amplifier...Ch. 7 - Why is the bandwidth of the emitterfollower...Ch. 7 - Prob. 7.1PCh. 7 - Prob. 7.2PCh. 7 - Consider the circuit in Figure P7.3. (a) Derive...Ch. 7 - Consider the circuit in Figure P7.4 with a signal...Ch. 7 - Consider the circuit shown in Figure P7.5. (a)...Ch. 7 - A voltage transfer function is given by...Ch. 7 - Sketch the Bode magnitude plots for the following...Ch. 7 - (a) Determine the transfer function corresponding...Ch. 7 - Consider the circuit shown in Figure 7.15 with...Ch. 7 - For the circuit shown in Figure P7.12, the...Ch. 7 - The circuit shown in Figure 7.10 has parameters...Ch. 7 - The transistor shown in Figure P7.14 has...Ch. 7 - Consider the circuit shown in Figure P7.15. The...Ch. 7 - The transistor in the circuit shown in Figure...Ch. 7 - For the common-emitter circuit in Figure P7.17,...Ch. 7 - The transistor in the circuit in Figure P7.20 has...Ch. 7 - For the circuit in Figure P7.21, the transistor...Ch. 7 - (a) For the circuit shown in Figure P7.22, write...Ch. 7 - Consider the circuit shown in Figure P7.23. (a)...Ch. 7 - The parameters of the transistor in the circuit in...Ch. 7 - A capacitor is placed in parallel with RL in the...Ch. 7 - The parameters of the transistor in the circuit in...Ch. 7 - Prob. D7.27PCh. 7 - The circuit in Figure P7.28 is a simple output...Ch. 7 - Reconsider the circuit in Figure P728. The...Ch. 7 - Consider the circuit shown in Figure P7.32. The...Ch. 7 - The commonemitter circuit in Figure P7.35 has an...Ch. 7 - Consider the commonbase circuit in Figure 7.33 in...Ch. 7 - Prob. 7.39PCh. 7 - The parameters of the transistor in the circuit in...Ch. 7 - In the commonsource amplifier in Figure 7.25(a) in...Ch. 7 - A bipolar transistor has fT=4GHz , o=120 , and...Ch. 7 - A highfrequency bipolar transistor is biased at...Ch. 7 - (a) The frequency fT of a bipolar transistor is...Ch. 7 - The circuit in Figure P7.48 is a hybrid ...Ch. 7 - Consider the circuit in Figure P7.49. Calculate...Ch. 7 - A common-emitter equivalent circuit is shown in...Ch. 7 - For the common-emitter circuit in Figure 7.41(a)...Ch. 7 - For the commonemitter circuit in Figure P7.52,...Ch. 7 - Consider the circuit in Figure P7.52. The resistor...Ch. 7 - The parameters of the circuit shown in Figure...Ch. 7 - The parameters of an nchannel MOSFET are kn=80A/V2...Ch. 7 - Find fT for a MOSFET biased at IDQ=120A and...Ch. 7 - Fill in the missing parameter values in the...Ch. 7 - (a) An nchannel MOSFET has an electron mobility of...Ch. 7 - A commonsource equivalent circuit is shown in...Ch. 7 - Prob. 7.60PCh. 7 - The parameters of an ideal nchannel MOSFET are...Ch. 7 - Figure P7.62 shows the highfrequency equivalent...Ch. 7 - For the FET circuit in Figure P7.63, the...Ch. 7 - The midband voltage gain of a commonsource MOSFET...Ch. 7 - Prob. 7.65PCh. 7 - Prob. 7.67PCh. 7 - The bias voltages of the circuit shown in Figure...Ch. 7 - For the PMOS commonsource circuit shown in Figure...Ch. 7 - In the commonbase circuit shown in Figure P7.70,...Ch. 7 - Repeat Problem 7.70 for the commonbase circuit in...Ch. 7 - In the commongate circuit in Figure P7.72, the...
Knowledge Booster
Similar questions
- Q7. Figure Q7(a) shows the spectrum of a frequency modulated waveform with a sinusoidal modulation. 12 4.8 5.0 5.2 5.4 5.6 5.8 6.0 Frequency/MHz Figure Q7: (a) Spectrum of a frequency modulated waveform with a sinusoidal modulation. (a) Is this modulated waveform described as narrowband or as wideband? (b) What is the value of the carrier frequency? (c) What is the value of the modulation frequency? (d) Determine the value of the peak frequency deviation. Plots of Bessel functions of the first kind are provided below in Figure Q7(b) to assist you. (e) Estimate the fraction of the total signal power at the carrier frequency. (f) Detection of such a frequency modulated signal is usually accomplished with the use of a discriminator. Describe the function of a discriminator. (g) What is the equivalent AM modulation index obtained if this signal in Figure Q7(a) is demodulated with a high-pass RC filter discriminator? J„(x) 1.0 0.8 0.6 0.4 0.2 -0.2 -0.4 Figure Q7: (b) Bessel functions of the…arrow_forwardQ2. Consider the circuit shown in Figure P7.15. The transistor has parameters B = 120 and VA collector-emitter voltage is VCEO = 1.25 V. (a) Determine Rc, (b) find Ico, and (c) determine the maximum gain. = ∞. The circuit bandwidth is 800 MHz and the quiescent Vcc= 2.5 V RC CL = 0.08 pF Figure P7.15arrow_forwardQ7. For the PMOS common-source circuit shown in Figure P7.69, the transistor parameters are: VTp = -2 V, K, Cgd = 3 pF. (a) Determine the upper 3 dB frequency. (b) What is the equiv- alent Miller capacitance? State any assumptions or approximations that you make. (c) Find the midband voltage gain. 1 mA/V², 1 = 0, Cgs = 15 pF, and +10 V Rs 0.5 kQ R=8 k2 Ci = 2 µF =Cs=10 µF wwHH R;=0.5 k2 Ce2 2 uF R3 = 22 k23 Rp=D 2 k2 RL= 5 k2 -10 V Figure P7.69 19 WW-arrow_forward
- EXERCISE PROBLEM *Ex 7.13: The transistor in the circuit in Figure 7.60 has parameters B= 125, VBE(on) = 0.7 V, VA = 200 V, C = 24 pF, and C= 3 pF. (a) Calculate the Miller capacitance. (b) Determine the upper 3 dB frequency. (c) Determine the small-signal midband voltage gain. (Ans. (a) CM = 155 pF, (b) fH = 1.21 MHz, (c) A] = 37.3)arrow_forward(a) Design the circuit shown in Figure P7.18 such that Ipo = 0.8 mA, VDsQ = 3.2 V, Rin K, = 0.5 mA/V², VTN = 1.2 V, and A = 0. (b) What is the midband volt- age gain? (c) Determine the magnitude of the voltage gain at (i) f = 5 Hz, (ii) f = 14 Hz, and (iii) f = 25 Hz. (d) Sketch the Bode plot of the voltage gain magnitude and phase. 160 k2, and fr 16 Hz. The transistor parameters are ass VDD =9 V Rp R1 Rin 1 O vO Cc Rs = 0.5 k2 R2 Figure P7.18 ww wwarrow_forwardWhat will be different if there is no "Ce"? Can you make a solution based on the absence of "Ce"? (Ce is parallel to Re.)arrow_forward
- 7.26. The sampling theorem, as we have derived it, states that a signal x(1) must be sam- pled at a rate greater than its bandwidth (or equivalently, a rate greater than twice its highest frequency). This implies that if x(1) has a spectrum as indicated in Figure P7.26(a) then x(1) must be sampled at a rate greater than 2002. However, since the signal has most of its energy concentrated in a narrow band, it would seem reason- able to expect that a sampling rate lower than twice the highest frequency could be used. A signal whose energy is concentrated in a frequency band is often referred to as a bandpass signal. There are a variety of techniques for sampling such signals, generally referred to as bandpass-sampling techniques. x(t) X(jw) MA @₁ W₂ (a) -W₂ -W₁ p(t) = Σ 8(t-nT) Io. Xp (t) H(jw) 1 -Wo n Wa p(t) H(jw) A+ (b) 3° W wp w x, (t) Figure P7.26arrow_forwardQ6. The parameters of the transistor in the common-source circuit in Fig- ure P7.67 are: K, = 2 mA/V², VTP =-2 V, 1 = 0.01 V-', Cgs = 10 pF, and Cgd (b) Find the upper 3 dB frequency and midband voltage gain. 1 pF. (a) Determine the equivalent Miller capacitance CM. +9 V Rs31.2 kQ R;= 2 k2 Cs ww 100 k2 Rp=1 k2 -9 V Figure P7.67 ww wwarrow_forwardA baseband signal has the spectrum sketched in the first image added below. The baseband signal modulates a 98 kHz carrier sine wave. Using frequency and amplitude labelling similar to that in Figure 2, sketch the spectrum of the modulated signal using a template added in image 2, for the following modulations: i-AM with the amplitude of the carrier wave being 20 V ii-DSBSC iii-SSB – the lower sideband iv-SSB – the upper sidebandarrow_forward
- 78. To assure the same accuracy at both 100 Hz and 100 MHz, the signal level into a frequency counter must be A higher at 100 MHz B. higher at 100 Hz C. inductively coupled at 100 MHz and capacitively coupled at 100 Hz D. resistively coupled at 100 MHz and direct coupled at 100 Hzarrow_forwardPlz solve it asaparrow_forwardQ2. For the scheme shown in Figure Q2, i. Draw the spectrum of the baseband signal (multiplexer output) for the multiplexer. ii. Determine the bandwidth of the baseband signal (multiplexer output) for the multiplexer. iii. Determine the minimum transmission bandwidth of the multiplexer. Explain, briefly, the modification needed for the multiplexer in the figure to achieve this bandwidth. 3 kHz cos 10,000nt Bascband signal cos? 1000nt Σ cos 22,000rt 4 kHz cos 36,000nt Figure Q2arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,