For the FET circuit in Figure P7.63, the transistor parameters are:
Figure P7.63
Want to see the full answer?
Check out a sample textbook solutionChapter 7 Solutions
MICROELECT. CIRCUIT ANALYSIS&DESIGN (LL)
- Mention 3 types of polarization that a circuit with BJT can have.arrow_forward7.65 In the circuit in Figure P7.65, the transistor parameters are: B = 120, VBE(on) = 0.7 V, VA = 100 V, C, = 1 pF, and fr = 600 MHz. (a) Deter- mine C, and the equivalent Miller capacitance CM. State any approxima- tions or assumptions that you make. (b) Find the upper 3 dB frequency and the midband voltage gain. Rc=D4 k2 R = 33 k2 C =1 uF Cc2 = 2 µF Rg = 2 k2 R = 5 ka R2 = 22 k2 Rg%3D 4 k2 Cg = 10 uF Figure P7.65 wwarrow_forward7.65 In the circuit in Figure P7.65, the transistor parameters are: B = 120, VBE(on) = 0.7 V, VA = 100 V, C, = 1 pF, and fr = 600 MHz. (a) Deter- mine C, and the equivalent Miller capacitance Cy. State any approxima- tions or assumptions that you make. (b) Find the upper 3 dB frequency and the midband voltage gain. +5 V Rc-4 k2 R= 33 k2 Ccz =2 AF CCi =1 uF wwwHE Rg = 2 ka 35 k2 R2= 22 ka 4 ks2 ww ww wwarrow_forward
- Q5. In the circuit in Figure P7.65, the transistor parameters are: B = 120, VBE (on) = 0.7 V, VA = 100 V, C, = 1 pF, and fr = 600 MHz. (a) Deter- mine C and the equivalent Miller capacitance CM. State any approxima- tions or assumptions that you make. (b) Find the upper 3 dB frequency and the midband voltage gain. +5 V Rc=4 k2 R = 33 k2 HH Cc2 = 2 µF CCi = 1 µF wwH Rs=2 kQ RL = 5 k2 R2 = 22 kO RE= 4 k2 CE= 10 µF Figure P7.65arrow_forwarddrive a formula for (SNR) of sinusoidal signal has been sampled and quantized.arrow_forwardA modulating signal f(t) has a maximum frequency of 18 kHz and peak value of 3volt, this signal is encoded using PCM. 1- Calculate the number of bits per sample if the number of levels is 130 2- Calculate the SNRQ if the average power of f(t) is 45 watt. 3- Calculate the minimum system bandwidth. e 7:20arrow_forward
- Q7. For the PMOS common-source circuit shown in Figure P7.69, the transistor parameters are: VTp = -2 V, K, Cgd = 3 pF. (a) Determine the upper 3 dB frequency. (b) What is the equiv- alent Miller capacitance? State any assumptions or approximations that you make. (c) Find the midband voltage gain. 1 mA/V², 1 = 0, Cgs = 15 pF, and +10 V Rs 0.5 kQ R=8 k2 Ci = 2 µF =Cs=10 µF wwHH R;=0.5 k2 Ce2 2 uF R3 = 22 k23 Rp=D 2 k2 RL= 5 k2 -10 V Figure P7.69 19 WW-arrow_forwardQ7. Figure Q7 shows a modulated waveform v(t) in millivolts as a function of time t in nanoseconds. 1.5 1.0 0.5 - 0.0 -0.5 -1.0 -1.5 100 200 300 400 500 t/ns Figure Q7: Modulated waveform (a) Describe the modulation scheme. (b) What are the values of the carrier frequency and the modulation frequency? (c) What is the value of the modulation index? (d) What is the transmission efficiency (ratio of modulated to total power) in this example? (e) Sketch the spectrum of this modulated waveform indicating the relative magnitudes of the various spectral components. (f) Demodulation of this type of waveform is usually performed with an envelope detector. Describe the function of an envelope detector and sketch an example circuit. (g) What requirements on the values of the components of your envelope detector circuit are there for the successful demodulation of the given waveform? (h) Keeping the same carrier wave, the modulating wave in this example is substituted with a square wave of 50%…arrow_forwardSolve both the problems pleasearrow_forward
- Q2. Consider the circuit shown in Figure P7.15. The transistor has parameters B = 120 and VA collector-emitter voltage is VCEO = 1.25 V. (a) Determine Rc, (b) find Ico, and (c) determine the maximum gain. = ∞. The circuit bandwidth is 800 MHz and the quiescent Vcc= 2.5 V RC CL = 0.08 pF Figure P7.15arrow_forwardA baseband signal has the spectrum sketched in the first image added below. The baseband signal modulates a 98 kHz carrier sine wave. Using frequency and amplitude labelling similar to that in Figure 2, sketch the spectrum of the modulated signal using a template added in image 2, for the following modulations: i-AM with the amplitude of the carrier wave being 20 V ii-DSBSC iii-SSB – the lower sideband iv-SSB – the upper sidebandarrow_forwardModify this circuit to extend the upper frequency limit to greater than 15 MHz. You may change the topology (i.e. configuration), but not the power supply voltage or collector bias current. The circuit voltage gain must be 46dB +/- 1 dB. Provide simulation results to show AC frequency responses of both circuits on the same plot, and annotate the 3dB upper frequency limit on both traces. Use typical ẞ values from the data sheet for the simulation. You may assume that 1% resistors are available in values below 100. The circuit must adhere to Standard Bias techniques. V4 Rser=0 SINE(0 0.02 10k) AC 1 VCC ୯ V2 +15V Cin1 1μ -VCC VCC R4 Rc1 147k 7k Q3 2N3904 R7 R6 9.09 20.5k Ce1 Re1 1.00k 10p Outarrow_forward
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,