In some speed ranges, vortices are shed from the rear of bluff cylinders placed across a flow. The vortices alternately leave the top and bottom of the cylinder, as shown, causing an alternating force normal to the freestream velocity. The vortex shedding frequency, f, is thought to depend on ρ, d, V, and μ. Use dimensional analysis to develop a functional relationship for f. Vortex shedding occurs in standard air on two cylinders with a diameter ratio of 2. Determine the velocity ratio for dynamic similarity, and the ratio of vortex shedding frequencies.
Want to see the full answer?
Check out a sample textbook solutionChapter 7 Solutions
Fox and McDonald's Introduction to Fluid Mechanics
Additional Engineering Textbook Solutions
Computer Science: An Overview (13th Edition) (What's New in Computer Science)
Starting Out with Java: From Control Structures through Objects (7th Edition) (What's New in Computer Science)
INTERNATIONAL EDITION---Engineering Mechanics: Statics, 14th edition (SI unit)
Java: An Introduction to Problem Solving and Programming (8th Edition)
Thinking Like an Engineer: An Active Learning Approach (4th Edition)
Concepts Of Programming Languages
- 5.13 The torque due to the frictional resistance of the oil film between a rotating shaft and its bearing is found to be dependent on the force F normal to the shaft, the speed of rotation N of the shaft, the dynamic viscosity of the oil, and the shaft diameter D. Establish a correlation among these variables by using dimensional analysis.arrow_forward3- Consider laminar flow over a flat plate. The boundary layer thickness & grows with distance x down the plate and is also a function of free-stream velocity U, fluid viscosity u, and fluid density p. Find the dimensionless parameters for this problem, being sure to rearrange if necessary to agree with the standard dimensionless groups in fluid mechanics.arrow_forwardThe drag force FD on a cylinder of diameter d and length l is to be studied. What functional form relates the dimensionless variables if a fluid with velocity V flows normal to the cylinder?arrow_forward
- The time t d to drain a liquid from a hole in the bottom of atank is a function of the hole diameter d , the initial fluidvolume y 0 , the initial liquid depth h 0 , and the density ρ andviscosity μ of the fluid. Rewrite this relation as a dimensionlessfunction, using Ipsen’s method.arrow_forwardQ1: If an air stream flowing at velocity (U) pasta body of length (L) causes a drag force (F) on the body which depends only upon U, L, and fluid viscosity μ. Formulate the suitable dimensionless parameter of the air drag force.arrow_forwardThe power P generated by a certain windmill design dependson its diameter D , the air density ρ , the wind velocity V , therotation rate Ω , and the number of blades n . ( a ) Write this relationship in dimensionless form. A model windmill, of diameter50 cm, develops 2.7 kW at sea level when V = 40 m/s andwhen rotating at 4800 r/min. ( b ) What power will be developedby a geometrically and dynamically similar prototype, ofdiameter 5 m, in winds of 12 m/s at 2000 m standard altitude?( c ) What is the appropriate rotation rate of the prototype?arrow_forward
- 1. (a) The motion of a floating vessel through the surrounding fluid results in a drag force D which is thought to depend upon the vessel's speed v, its length I, the density p and dynamic viscosity μ of the fluid and the acceleration due to gravity g. Show that:- D = pv²1² (1) (b) In order to predict the drag on a full scale 50m long ship traveling at 7m/s in sea water at 5°C of density 1027.7225 kg/m³ and viscosity 1.62 x 103 Pa.s, a model 3m long is tested in a liquid of density 805 kg/m³. What speed does the model need to be tested at and what is the required viscosity of the liquid?arrow_forwardDimensional analysis can be used in problems other than áuid mechanics ones. The important variablesaffecting the period of a vibrating beam (usually designated as T and with dimensions of time) are the beamlength `, area moment of inertia I, modulus of elasticity E, material density , and Poissonís ratio , so thatT = f cn(`; I; E; ; )Recall that the modulus of elasticity has typical units of N/m2 and Poissonís ratio is dimensionless.(a) Find dimensionless version of the functional relationship.(b) If E and I must always appear together (meaning that EI is e§ectively a single variable), Önd a dimensionless version of the functional relationship.arrow_forwardProblem 01 t* = 0.015s 100 m In 1940, fluid dynamicist G. I. Taylor determined from Dimensional Analysis that the radius R of a fireball created by a nuclear explosion is exclusively determined by the released energy E, initial gas density po and elapsed time t* since detonation. Note: 1 kiloton = 4 × 1012 J (Joules). (a) List in a table the primary dimensions of R, E, po and t*. How many primary dimensions are there? (b) Find the single Pi group that controls the blast radius R. (c) In 1945, an experiment was conducted in the desert of New Mexico with a 20 kiloton bomb. On that day, air density was recorded at po = 1.23kg/m³. The photograph above taken at t* 0.015s shows a radius R108 m. Compute the value of the Pi group you have found. (d) Assuming that the Pi group remains constant, find the blast radius R at t* = 0.02s.arrow_forward
- When a steady uniform stream flows over a circular cylinder, vortices are shed at a periodic rate. These are referred to as Kármán vortices. The frequency of vortex shedding få is defined by the free-stream speed V, fluid density p, fluid viscosity u, and cylinder diameter D. Use the Buckingham Pi method to show a dimensionless relationship for Kármán vortex shedding frequency is St = f (Re). Show all your work. V Darrow_forwardProblem 1: The discharge pressure (P) of a centrifugal pump shown below is a function of flow rate (Q), impeller diameter (D), fluid density (p), and impeller angular speed (12). P = f (Q. D, p. 92). Use the Buckingham pi technique to rewrite this function in terms of dimensionless parameters, 1 g (n₂). P= P(Q,D, Dimensions 2) N= 5 Q. Parrow_forwardWhen a fluid flows slowly past a vertical plate of height h and width b, pressure develops on the face of the plate. Assume that the pressure, p, at the midpoint of the plate is a function of plate height and width, the approach velocity V, and the fluid viscosity u and fluid density p. Make use of dimensional analysis to determine how the pressure, p will be formed with a dimensionless group. (Take b, V. p as repeating variables). Select one: O a. n1 = p /V² p O b. n1 = p/Ve O c.n1 = p/Vp? O d. 11 = p/V² p²arrow_forward
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning