The rate dT/dt at which the temperature T at the center of a rice kernel falls during a food technology process is critical—too high a value leads to cracking of the kernel, and too low a value makes the process slow and costly. The rate depends on the rice specific heat, c, thermal conductivity, k, and size, L, as well as the cooling air specific heat, cp, density, ρ, viscosity, μ, and speed, V. How many basic dimensions are included in these variables? Determine the Π parameters for this problem.
Want to see the full answer?
Check out a sample textbook solutionChapter 7 Solutions
Fox and McDonald's Introduction to Fluid Mechanics
Additional Engineering Textbook Solutions
Applied Fluid Mechanics (7th Edition)
Automotive Technology: Principles, Diagnosis, And Service (6th Edition) (halderman Automotive Series)
Engineering Mechanics: Statics
Engineering Mechanics: Dynamics (14th Edition)
Manufacturing Engineering & Technology
Applied Statics and Strength of Materials (6th Edition)
- In medical literatures, local blood perfusion rate is typically presented as xx ml/(min 100g tissue), in another word, it represents xx ml of blood supplied to a tissue mass of 100 g per minute to satisfy its nutritional needs. As we learned from the course lectures, the local blood perfusion rate appearing in the Pennes bioheat equation is in a unit of 1/s, or can be interpreted as xx ml of blood supplied to a tissue volume of 1 ml per second. The following lists the blood perfusion rates in various organs or structures in a human body from medical textbooks: brain (50 ml/(min 100g tissue)), kidney (35 ml/(min 100g tissue)), and muscle at rest (3 ml/(min 100g tissue)). Please convert the above local blood perfusion rates into values with the unit of 1/s, therefore, they can be used in the Pennes bioheat equation. The tissue density in a human body is 1050 kg/m³.arrow_forward4 Discharge, Q through a venturimeter depends on the following variable Inlet pipe diameter - D Throat diameter - d Pressure drop across the venturimeter - Ap Fluid density - P Dynamic viscosity - µ Using MLT set of dimensions evaluate the dimensionless parameters correlating this phenomenon 5 The droplet size, D produced by a liquid spray nozzle depends on the following variable Nozzle diameter - d Jet velocity - U Fluid density - p Dynamic viscosity – u Surface tension - o Using MLT set of dimensions evaluate the dimensionless parameters correlating this phenomenonarrow_forwardHelp please I'm stuck on these two problems.arrow_forward
- 4- A thermometer having a time constant of 0.4 min. is placed in a temperature bath and after the thermometer comes to equilibrium with the bath, the temperature of the bath is increased linearly with time at the rate of 2 deg.C min. what is the difference between the indicated temperature and bath temperature after : (a) 2 min. (b) 20 min.arrow_forwardA cart weighing 0.5 kg is drawn up a smooth 45° incline by a motor, M, winding up a cable. The force in the cable can be expressed as 5t² N, where t is in seconds. When t = 0, the displacement s = 0 and the initial velocity is 3 m/s. Find the cart's velocity when t = 2 seconds. > Draw a very clear FBD of the cart that you can use to write the equations of motion > Write the equations governing the cart's motion along the incline. Use axes parallel and perpendicular to the incline. Find the velocity requestedarrow_forwardCakulate the time rate of change of air density during expiration Assume that the lung (Fig. 3.11) has a total volume of 6000 ml, the diameter of the trachea is 18 mm, the airflow velocity out of the trachea is 20 cm/s, and the density of air is 1.225 kg/m. Also assume that lung volume is decreasing at a rate of 100 mL/s. Hello sir, I want the same solution, but in a detailed way and mention his data, a question, and a solution in detailing mathematics without words. Solution We will start from Eq. (3.24) because we are asked for the time rate of change of density. We are asked to find the time rate of change of air density; this suggests that Example 3.5 condis tions are representing a nonsteady flow scenario. In addition, we were told what the rate of change in the lung volume is during this procedure, further supporting the use of Eq. (3.24). pdV+ (3.24 ams Assume that at the instant in time that we are measuring the system, density is uniform within the volume of interest. This…arrow_forward
- The pressure rise, Ap across a centrifugal pump from a given manufacture can be expected to depend on the angular velocity of the impeller w, the Diameter D, of the impeller, the volume flow-rate Q, and the density of the fluid, p. By using the method of repeating variables show that Др ρω- D wD³ A model pump having an impeller diameter of 0.200 m is tested in the laboratory using water. The pressure rise when tested at an angular velocity of 407 rad/sec is shown on the graph. What would be the pressure rise for a geometrically similar pump with an impeller diameter of 0.30 m used to pump water operating at an angular velocity of 807 rad/sec and at a flow rate of 0.070 m³/s? Sol: 40 30 (kPa) Apm 10 0 € 0.02 Q Model data (₁ = 40 rad/s Dm = 20 cm 0.04 0.06 Qm (cubic meters per sec) 0.08arrow_forwardplease show solution step by step with units. SUbject: Thermodynamics, Topic: Procecesses of Gases answer it in 30 mins. also, identify the systemarrow_forwardA fender is mounted on a automobile though dampers (to absorb collision energy) and springs (so that the fender can recover after low-speed collisions). During a crash-test, the automobile is moving at 2 m/s when its fender strikes a concrete barrier. The vehicle mass, m, is 1,000 kg. (In comparison, the fender itself is essentially massless.) The springs that mount the fender have a stiffness, k, of 1,000,000 N/m. y m barrier 1) Write a differential equation for the deflection of the springs when the fender is in contact with the barrier. 2) If the damping coefficient, c, is 30,000 N-s/m, what is the damping ratio of the mass-spring-damper system when the fender is in contact with the barrier? 3) For that damping coefficient, make a reasonably accurate sketch (with properly labeled axes) of the time-course of the force exerted on the barrier, starting from the moment of first contact. 4) Is there any value of the damping coefficient, c, that would yield no rebound of the vehicle from…arrow_forward
- The friction in flows through the pipe is defined by a dimensionless number called the fanning friction factor (f). The Fanning friction factor is represented by another dimensionless number, the Reynolds number (Re).It depends on the diameter of the pipe and some parameters related to the fluid. An equation that can predict f given the Reynolds number is given as follows. If Re =4000, e/D=0.01 in this equation, find the value of f using the Simple Iteration method by taking f0=0.1 as the initial value for the solution (ԑ=0.0001)arrow_forwardI need all parts in neat and clean handwritten solution with proper explanation of MCQ questions. Do remember expert before attempting. BEST OF LUCKarrow_forwardThe pressure difference ∆p produced by a water pump, and the power P required to operate it, each depend on the size of the pump, measured by the diameter D of the impeller, the volume flow rate ˙q, the rate of rotation ω, the water density ρ and dynamic viscosity µ. (a) Express the non-dimensional pressure difference and power as separate functions of the other non-dimensional groups. (b) Tests on a model pump are performed at 0.5 × full scale, at a rotation rate that is 2 × the full-scale value. To achieve dynamic similarity in the model test: (i) what would the volume flow rate of the water need to be in the model test compared to the full-scale? (ii) What would the pressure difference be compared to the full scale? (iii) What would the power consumption be relative to the full scale?arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY