College Physics: A Strategic Approach (3rd Edition)
3rd Edition
ISBN: 9780321879721
Author: Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 7, Problem 44P
While sitting in a swivel chair, you push against the floor with your heel to make the chair spin. The 7.0 N frictional force is applied at a point 40 cm from the chair’s rotation axis, in the direction that causes the greatest
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 7 Solutions
College Physics: A Strategic Approach (3rd Edition)
Ch. 7 - The batter in a baseball game hits a home run. As...Ch. 7 - Viewed from somewhere in space above the north...Ch. 7 - Figure Q7.3 shows four pulleys, each with a heavy...Ch. 7 - If you are using a wrench to loosen a very...Ch. 7 - If you are using a wrench to loosen a very...Ch. 7 - A screwdriver with a very thick handle requires...Ch. 7 - If you have ever driven a truck, you likely found...Ch. 7 - A common type of door stop is a wedge made of...Ch. 7 - A student gives a steady push to a ball at the end...Ch. 7 - Prob. 10CQ
Ch. 7 - Prob. 11CQCh. 7 - If you grasp a hammer by its lightweight handle...Ch. 7 - Suppose you have two identical-looking metal...Ch. 7 - The moment of inertia of a uniform rod about an...Ch. 7 - The wheel in Figure Q7.15 is rolling to the right...Ch. 7 - With care, its possible to walk on top of a barrel...Ch. 7 - A nut needs to be tightened with a wrench. Which...Ch. 7 - Suppose a bolt on your car engine needs to be...Ch. 7 - Prob. 19MCQCh. 7 - A typical compact disk has a mass of 15 g and a...Ch. 7 - Suppose manufacturers increase the size of compact...Ch. 7 - Two horizontal rods are each held up by vertical...Ch. 7 - Prob. 23MCQCh. 7 - A particle undergoing circular motion in the...Ch. 7 - Questions 25 through 27 concern a classic...Ch. 7 - Questions 25 through 27 concern a classic...Ch. 7 - Questions 25 through 27 concern a classic...Ch. 7 - What is the angular position in radians of the...Ch. 7 - A child on a merry-go-round takes 3.0 s to go...Ch. 7 - What is the angular speed of the tip of the minute...Ch. 7 - An old-fashioned vinyl record rotates on a...Ch. 7 - The earths radius is about 4000 miles. Kampala,...Ch. 7 - A Ferris wheel rotates at an angular velocity of...Ch. 7 - A turntable rotates counterclockwise at 78 rpm. A...Ch. 7 - A fast-moving superhero in a comic book runs...Ch. 7 - Figure P7.9 shows the angular position of a...Ch. 7 - The angular velocity (in rpm) of the blade of a...Ch. 7 - The 1.00-cm-long second hand on a watch rotates...Ch. 7 - The earths radius is 6.37 106 m; it rotates once...Ch. 7 - To throw a discus, the thrower holds it with a...Ch. 7 - A computer hard disk starts from rest, then speeds...Ch. 7 - The crankshaft in a race car goes from rest to...Ch. 7 - Reconsider the situation in Example 7.10. If Luis...Ch. 7 - Balls are attached to light rods and can move in...Ch. 7 - Six forces, each of magnitude either F or 2F, are...Ch. 7 - What is the net torque about the axle on the...Ch. 7 - The tune-up specifications of a car call for the...Ch. 7 - A professors office door is 0.91 m wide, 2.0 m...Ch. 7 - In Figure P7.22, force F2, acts half as far from...Ch. 7 - Tom and Jerry both push on the 3.00-m-diameter...Ch. 7 - What is the net torque on the bar shown in Figure...Ch. 7 - What is the net torque on the bar shown in Figure...Ch. 7 - What is the net torque on the bar shown in Figure...Ch. 7 - Prob. 27PCh. 7 - Prob. 28PCh. 7 - Hold your arm outstretched so that it is...Ch. 7 - Prob. 30PCh. 7 - The 2.0 kg, uniform, horizontal rod in Figure...Ch. 7 - A 4.00-m-long, 500 kg steel beam extends...Ch. 7 - An athlete at the gym holds a 3.0 kg steel ball in...Ch. 7 - The 2.0-m-long, 15 kg beam in Figure P7.34 is...Ch. 7 - Two thin beams are joined end-to-end as shown in...Ch. 7 - Figure P7.36 shows two thin beams joined at right...Ch. 7 - A regulation table tennis ball is a thin spherical...Ch. 7 - Three pairs of balls are connected by very light...Ch. 7 - A playground toy has four seats, each 5.0 kg,...Ch. 7 - A solid cylinder with a radius of 4.0 cm has the...Ch. 7 - A bicycle rim has a diameter of 0.65 m and a...Ch. 7 - a. What is the moment of inertia of the door in...Ch. 7 - A small grinding wheel has a moment of inertia of...Ch. 7 - While sitting in a swivel chair, you push against...Ch. 7 - An objects moment of inertia is 2.0 kg m2. Its...Ch. 7 - A 200 g, 20-cm-diameter plastic disk is spun on an...Ch. 7 - The 2.5 kg object shown in Figure P7.47 has a...Ch. 7 - A frictionless pulley, which can be modeled as a...Ch. 7 - If you lift the front wheel of a poorly maintained...Ch. 7 - On page 207 there is a photograph of a girl...Ch. 7 - A toy top with a spool of diameter 5.0 cm has a...Ch. 7 - A bicycle with 0.80-m-diameter tires is coasting...Ch. 7 - Figure P7.55 shows the angular...Ch. 7 - The grap in Figure P7.56 shows the angular...Ch. 7 - A car with 58-cm-diameter tires accelerates...Ch. 7 - The cable lifting an elevator is wrapped around a...Ch. 7 - The 20-cm-diameter disk in Figure P7.59 can rotate...Ch. 7 - A combination lock has a 1.0-cm-diameter knob that...Ch. 7 - A 70 kg mans arm, including the hand, can be...Ch. 7 - The three masses shown in Figure P7.62 are...Ch. 7 - A reasonable estimate of the moment of inertia of...Ch. 7 - Starting from rest, a 12-cm-diameter compact disk...Ch. 7 - The ropes in Figure P7.65 are each wrapped around...Ch. 7 - Flywheels are large, massive wheels used to store...Ch. 7 - A 1.0 kg ball and a 2.0 kg ball are connected by a...Ch. 7 - A 1.5 kg block is connected by a rope across a...Ch. 7 - The two blocks in Figure P7.69 are connected by a...Ch. 7 - The 2.0 kg, 30-cm-diameter disk in Figure P7.70 is...Ch. 7 - A tradesman sharpens a knife by pushing it with a...Ch. 7 - MCAT-Style Passage Problems The Bunchberry The...Ch. 7 - The Bunchberry The bunchberry flower has the...Ch. 7 - The Bunchberry The bunchberry flower has the...Ch. 7 - The Bunchberry The bunchberry flower has the...Ch. 7 - Prob. 76MSPPCh. 7 - Prob. 77MSPPCh. 7 - Prob. 78MSPP
Additional Science Textbook Solutions
Find more solutions based on key concepts
Correct any incorrect equations. If no reaction occurs, write NO REACTION. a. Ba(NO3)2(aq)+(NH4)2SO4(aq)BaSO4(s...
Introductory Chemistry (6th Edition)
2. Whether an allele is dominant or recessive depends on
a. how common the allele is, relative to other alleles...
Campbell Biology: Concepts & Connections (9th Edition)
5. When the phenotype of heterozygotes is intermediate between the phenotypes of the two homozygotes, this patt...
Biology: Life on Earth (11th Edition)
Fill in the blanks: The nose is to the mouth. The ankle is to the knee. The ring finger is to the inde...
Human Anatomy & Physiology (2nd Edition)
In what way do the membranes of a eukaryotic cell vary? A. Phospholipids are found only in certain membranes. B...
Campbell Biology in Focus (2nd Edition)
The accompanying chromosome diagram represents a eukaryotic chromosome prepared with Giemsa stain. Indicate the...
Genetic Analysis: An Integrated Approach (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A student sits on a freely rotating stool holding two dumbbells, each of mass 3.00 kg (Fig. P10.56). When his arms are extended horizontally (Fig. P10.56a), the dumbbells are 1.00 m from the axis of rotation and the student rotates with an angular speed of 0.750 rad/s. The moment of inertia of the student plus stool is 3.00 kg m2 and is assumed to be constant. The student pulls the dumbbells inward horizontally to a position 0.300 m from the rotation axis (Fig. P10.56b). (a) Find the new angular speed of the student. (b) Find the kinetic energy of the rotating system before and after he pulls the dumbbells inward. Figure P10.56arrow_forwardIn testing an automobile tire for proper alignment, a technicianmarks a spot on the tire 0.200 m from the center. He then mountsthe tire in a vertical plane and notes that the radius vector to thespot is at an angle of 35.0 with the horizontal. Starting from rest,the tire is spun rapidly with a constant angular acceleration of 3.00 rad/s2. a. What is the angular speed of the wheel after 4.00 s? b. What is the tangential speed of the spot after 4.00 s? c. What is the magnitude of the total accleration of the spot after 4.00 s?" d. What is the angular position of the spot after 4.00 s?arrow_forwardA disk 8.00 cm in radius rotates at a constant rate of 1200 rev/min about its central axis. Determine (a) its angular speed in radians per second, (b) the tangential speed at a point 3.00 cm from its center, (c) the radial acceleration of a point on the rim, and (d) the total distance a point on the rim moves in 2.00 s.arrow_forward
- A playground merry-go-round of radius R = 2.00 m has a moment of inertia I = 250 kg m2 and is rotating at 10.0 rev/min about a frictionless, vertical axle. Facing the axle, a 25.0-kg child hops onto the merry-go-round and manages to sit down on the edge. What is the new angular speed of the merry-go-round?arrow_forwardThe uniform thin rod in Figure P8.47 has mass M = 3.50 kg and length L = 1.00 m and is free to rotate on a friction less pin. At the instant the rod is released from rest in the horizontal position, find the magnitude of (a) the rods angular acceleration, (b) the tangential acceleration of the rods center of mass, and (c) the tangential acceleration of the rods free end. Figure P8.47 Problems 47 and 86.arrow_forwardFind the net torque on the wheel in Figure P10.23 about the axle through O, taking a = 10.0 cm and b = 25.0 cm. Figure P10.23arrow_forward
- The velocity of a particle of mass m = 2.00 kg is given by v= 5.10 + 2.40 m /s. What is the angular momentumof the particle around the origin when it is located atr= 8.60 3.70 m?arrow_forwardDuring a certain time interval, the angular position of a swinging door is described by = 5.00 + 10.0t + 2.00t2, where is in radians and t is in seconds. Determine the angular position, angular speed, and angular acceleration of the door (a) at t = 0 and (b) at t = 3.00 s.arrow_forwardA solid cylinder of mass 2.0 kg and radius 20 cm is rotating counterclockwise around a vertical axis through its center at 600 rev/min. A second solid cylinder of the same mass and radius is rotating clockwise around the same vertical axis at 900 rev/min. If the cylinders couple so that they rotate about the same vertical axis, what is the angular velocity of the combination?arrow_forward
- Why is the following situation impossible? Starting from rest, a disk rotates around a fixed axis through an angle of 50.0 rad in a time interval of 10.0 s. The angular acceleration of the disk is constant during the entire motion, and its final angular speed is 8.00 rad/s.arrow_forwardA turntable (disk) of radius r = 26.0 cm and rotational inertia0.400 kg m2 rotates with an angular speed of 3.00 rad/s arounda frictionless, vertical axle. A wad of clay of mass m =0.250 kg drops onto and sticks to the edge of the turntable.What is the new angular speed of the turntable?arrow_forwardA disk with moment of inertia I1 rotates about a frictionless, vertical axle with angular speed i. A second disk, this one having moment of inertia I2 and initially not rotating, drops onto the first disk (Fig. P10.50). Because of friction between the surfaces, the two eventually reach the same angular speed f. (a) Calculate f. (b) Calculate the ratio of the final to the initial rotational energy. Figure P10.50arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Rotational Kinetic Energy; Author: AK LECTURES;https://www.youtube.com/watch?v=s5P3DGdyimI;License: Standard YouTube License, CC-BY