MCAT-Style Passage Problems The Bunchberry The bunchberry flower has the fastest-moving parts ever seen in a plant. Initially, the stamens are held by the petals in a bent position, storing energy like a coiled spring. As the petals release, the tips of the stamens fly up and quickly release a burst of pollen. Figure P7. 72 shows the details of the motion. The tips of the stamens act like a catapult, flipping through a 60° angle; the times on the earlier photos show that this happens in just 0.30 ms. We can model a stamen tip as a 1.0-mm-Jong, 10 μg rigid rod with a 10 μg anther sac at one end and a pivot point at the opposite end. Though an oversimplification, we will model the motion by assuming the angular acceleration is constant throughout the motion. P7.75 72. What is the angular acceleration of the anther sac during the motion? A. 3.5 × 10 3 rad/s 2 B. 7.0 × 10 3 rad/s 2 C. 1.2 × 10 7 rad/s 2 D. 2.3 × 10 7 rad/s 2
MCAT-Style Passage Problems The Bunchberry The bunchberry flower has the fastest-moving parts ever seen in a plant. Initially, the stamens are held by the petals in a bent position, storing energy like a coiled spring. As the petals release, the tips of the stamens fly up and quickly release a burst of pollen. Figure P7. 72 shows the details of the motion. The tips of the stamens act like a catapult, flipping through a 60° angle; the times on the earlier photos show that this happens in just 0.30 ms. We can model a stamen tip as a 1.0-mm-Jong, 10 μg rigid rod with a 10 μg anther sac at one end and a pivot point at the opposite end. Though an oversimplification, we will model the motion by assuming the angular acceleration is constant throughout the motion. P7.75 72. What is the angular acceleration of the anther sac during the motion? A. 3.5 × 10 3 rad/s 2 B. 7.0 × 10 3 rad/s 2 C. 1.2 × 10 7 rad/s 2 D. 2.3 × 10 7 rad/s 2
The bunchberry flower has the fastest-moving parts ever seen in a plant. Initially, the stamens are held by the petals in a bent position, storing energy like a coiled spring. As the petals release, the tips of the stamens fly up and quickly release a burst of pollen.
Figure P7. 72 shows the details of the motion. The tips of the stamens act like a catapult, flipping through a 60° angle; the times on the earlier photos show that this happens in just 0.30 ms. We can model a stamen tip as a 1.0-mm-Jong, 10 μg rigid rod with a 10 μg anther sac at one end and a pivot point at the opposite end. Though an oversimplification, we will model the motion by assuming the angular acceleration is constant throughout the motion. P7.75
72. What is the angular acceleration of the anther sac during the motion?
A. 3.5 × 103 rad/s2
B. 7.0 × 103 rad/s2
C. 1.2 × 107 rad/s2
D. 2.3 × 107 rad/s2
Definition Definition Rate of change of angular velocity. Angular acceleration indicates how fast the angular velocity changes over time. It is a vector quantity and has both magnitude and direction. Magnitude is represented by the length of the vector and direction is represented by the right-hand thumb rule. An angular acceleration vector will be always perpendicular to the plane of rotation. Angular acceleration is generally denoted by the Greek letter α and its SI unit is rad/s 2 .
In a scene from The Avengers (the first one) Black Widow is boosted directly upwards by Captain America, where she then grabs on to a Chitauri speeder that is 15.0 feet above her and hangs on. She is in the air for 1.04 s. A) With what initial velocity was Black Widow launched? 1 m = 3.28 ft B) What was Black Widow’s velocity just before she grabbed the speeder? Assume upwards is the positive direction.
In Dark Souls 3 you can kill the Ancient Wyvern by dropping on its head from above it. Let’s say you jump off the ledge with an initial velocity of 3.86 mph and spend 1.72 s in the air before hitting the wyvern’s head. Assume the gravity is the same as that of Earth and upwards is the positive direction. Also, 1 mile = 1609 m. A) How high up is the the ledge you jumped from as measured from the wyvern’s head? B) What is your velocity when you hit the wyvern?
A) If Yoshi flings himself downwards at 9.76 miles per hour to hit an enemy 10.5 m below him, how fast is Yoshi traveling when he hits the enemy? 1 mile = 1609 m
Chapter 7 Solutions
College Physics: A Strategic Approach (3rd Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.