College Physics: A Strategic Approach (3rd Edition)
3rd Edition
ISBN: 9780321879721
Author: Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 7, Problem 11CQ
To determine
Position of center of gravity of the dumbbell.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The two ends of the barbell shown are made of the same material. Which of the points shown is at the barbell’s center of gravity?
A bicycle mechanic is checking a road bike’s chain. He applies a 45 N force to a pedal at the angle shown while keeping the wheel from rotating. The pedal is 17 cm from the center of the crank; the gear has a diameter of 16 cm. What is the tension in the chain?
The main muscles that hold your head upright attach to your spine in back of the point where your head pivots on your neck. Figure P8.66 shows typical numbers for the distance from the pivot to the muscle attachment point and the distance from the pivot to the center of gravity of the head. The muscles pull down to keep your head upright. If the muscle relaxes—if, for instance, you doze in one of your classes besides Physics—your head tips forward. In the questions that follow, assume that your head has a mass of 4.8 kg, and that you maintain the relative angle between your head and your spine.
a. With the head held level, as shown, what muscle force is needed to keep a 4.8 kg head upright?b. If you tip your body forward so that your spine is level with the ground, what muscle force is needed to keep your head in the same orientation relative to the spine?c. If you tip your body backward, you will reach a point where no muscle force is needed to keep your head upright. For the…
Chapter 7 Solutions
College Physics: A Strategic Approach (3rd Edition)
Ch. 7 - The batter in a baseball game hits a home run. As...Ch. 7 - Viewed from somewhere in space above the north...Ch. 7 - Figure Q7.3 shows four pulleys, each with a heavy...Ch. 7 - If you are using a wrench to loosen a very...Ch. 7 - If you are using a wrench to loosen a very...Ch. 7 - A screwdriver with a very thick handle requires...Ch. 7 - If you have ever driven a truck, you likely found...Ch. 7 - A common type of door stop is a wedge made of...Ch. 7 - A student gives a steady push to a ball at the end...Ch. 7 - Prob. 10CQ
Ch. 7 - Prob. 11CQCh. 7 - If you grasp a hammer by its lightweight handle...Ch. 7 - Suppose you have two identical-looking metal...Ch. 7 - The moment of inertia of a uniform rod about an...Ch. 7 - The wheel in Figure Q7.15 is rolling to the right...Ch. 7 - With care, its possible to walk on top of a barrel...Ch. 7 - A nut needs to be tightened with a wrench. Which...Ch. 7 - Suppose a bolt on your car engine needs to be...Ch. 7 - Prob. 19MCQCh. 7 - A typical compact disk has a mass of 15 g and a...Ch. 7 - Suppose manufacturers increase the size of compact...Ch. 7 - Two horizontal rods are each held up by vertical...Ch. 7 - Prob. 23MCQCh. 7 - A particle undergoing circular motion in the...Ch. 7 - Questions 25 through 27 concern a classic...Ch. 7 - Questions 25 through 27 concern a classic...Ch. 7 - Questions 25 through 27 concern a classic...Ch. 7 - What is the angular position in radians of the...Ch. 7 - A child on a merry-go-round takes 3.0 s to go...Ch. 7 - What is the angular speed of the tip of the minute...Ch. 7 - An old-fashioned vinyl record rotates on a...Ch. 7 - The earths radius is about 4000 miles. Kampala,...Ch. 7 - A Ferris wheel rotates at an angular velocity of...Ch. 7 - A turntable rotates counterclockwise at 78 rpm. A...Ch. 7 - A fast-moving superhero in a comic book runs...Ch. 7 - Figure P7.9 shows the angular position of a...Ch. 7 - The angular velocity (in rpm) of the blade of a...Ch. 7 - The 1.00-cm-long second hand on a watch rotates...Ch. 7 - The earths radius is 6.37 106 m; it rotates once...Ch. 7 - To throw a discus, the thrower holds it with a...Ch. 7 - A computer hard disk starts from rest, then speeds...Ch. 7 - The crankshaft in a race car goes from rest to...Ch. 7 - Reconsider the situation in Example 7.10. If Luis...Ch. 7 - Balls are attached to light rods and can move in...Ch. 7 - Six forces, each of magnitude either F or 2F, are...Ch. 7 - What is the net torque about the axle on the...Ch. 7 - The tune-up specifications of a car call for the...Ch. 7 - A professors office door is 0.91 m wide, 2.0 m...Ch. 7 - In Figure P7.22, force F2, acts half as far from...Ch. 7 - Tom and Jerry both push on the 3.00-m-diameter...Ch. 7 - What is the net torque on the bar shown in Figure...Ch. 7 - What is the net torque on the bar shown in Figure...Ch. 7 - What is the net torque on the bar shown in Figure...Ch. 7 - Prob. 27PCh. 7 - Prob. 28PCh. 7 - Hold your arm outstretched so that it is...Ch. 7 - Prob. 30PCh. 7 - The 2.0 kg, uniform, horizontal rod in Figure...Ch. 7 - A 4.00-m-long, 500 kg steel beam extends...Ch. 7 - An athlete at the gym holds a 3.0 kg steel ball in...Ch. 7 - The 2.0-m-long, 15 kg beam in Figure P7.34 is...Ch. 7 - Two thin beams are joined end-to-end as shown in...Ch. 7 - Figure P7.36 shows two thin beams joined at right...Ch. 7 - A regulation table tennis ball is a thin spherical...Ch. 7 - Three pairs of balls are connected by very light...Ch. 7 - A playground toy has four seats, each 5.0 kg,...Ch. 7 - A solid cylinder with a radius of 4.0 cm has the...Ch. 7 - A bicycle rim has a diameter of 0.65 m and a...Ch. 7 - a. What is the moment of inertia of the door in...Ch. 7 - A small grinding wheel has a moment of inertia of...Ch. 7 - While sitting in a swivel chair, you push against...Ch. 7 - An objects moment of inertia is 2.0 kg m2. Its...Ch. 7 - A 200 g, 20-cm-diameter plastic disk is spun on an...Ch. 7 - The 2.5 kg object shown in Figure P7.47 has a...Ch. 7 - A frictionless pulley, which can be modeled as a...Ch. 7 - If you lift the front wheel of a poorly maintained...Ch. 7 - On page 207 there is a photograph of a girl...Ch. 7 - A toy top with a spool of diameter 5.0 cm has a...Ch. 7 - A bicycle with 0.80-m-diameter tires is coasting...Ch. 7 - Figure P7.55 shows the angular...Ch. 7 - The grap in Figure P7.56 shows the angular...Ch. 7 - A car with 58-cm-diameter tires accelerates...Ch. 7 - The cable lifting an elevator is wrapped around a...Ch. 7 - The 20-cm-diameter disk in Figure P7.59 can rotate...Ch. 7 - A combination lock has a 1.0-cm-diameter knob that...Ch. 7 - A 70 kg mans arm, including the hand, can be...Ch. 7 - The three masses shown in Figure P7.62 are...Ch. 7 - A reasonable estimate of the moment of inertia of...Ch. 7 - Starting from rest, a 12-cm-diameter compact disk...Ch. 7 - The ropes in Figure P7.65 are each wrapped around...Ch. 7 - Flywheels are large, massive wheels used to store...Ch. 7 - A 1.0 kg ball and a 2.0 kg ball are connected by a...Ch. 7 - A 1.5 kg block is connected by a rope across a...Ch. 7 - The two blocks in Figure P7.69 are connected by a...Ch. 7 - The 2.0 kg, 30-cm-diameter disk in Figure P7.70 is...Ch. 7 - A tradesman sharpens a knife by pushing it with a...Ch. 7 - MCAT-Style Passage Problems The Bunchberry The...Ch. 7 - The Bunchberry The bunchberry flower has the...Ch. 7 - The Bunchberry The bunchberry flower has the...Ch. 7 - The Bunchberry The bunchberry flower has the...Ch. 7 - Prob. 76MSPPCh. 7 - Prob. 77MSPPCh. 7 - Prob. 78MSPP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) When opening a door, you push on it perpendicularly with a force of 55.0 N at a distance of 0.850 m from the hinges. What torque are you exerting relative to the hinges? (b) Does it matter if you push at the same height as the hinges? There is only one pair of hinges.arrow_forwardItem 6 A 4.80-m-long, 500 kg steel uniform beam extends horizontally from the point where it has been bolted to the framework of a new building under construction. A 70 kg construction worker stands at the far end of the beam. Part A What is the magnitude of the torque about the bolt due to the worker and the weight of the beam? T = VE ΑΣΦ ? N.marrow_forwardThe arm in Figure P8.17 weighs 41.5 N. The force of gravity acting on the arm acts through point A. Determine the magnitudes of the tension force F, in the deltoid muscle and the force F, exerted by the shoulder on the humerus (upper- arm bone) to hold the arm in the position shown. F, 12° F, '0.080 m -0.290 m Figure P8.17arrow_forward
- A P8.11 SL: dir Find the x and y coordinates of the center of gravity of a 4.00 ft by 8.00 ft uniform sheet of plywood with the upper right quadrant removed as shown in the following figure. Hint: The mass of any segment of the plywood sheet is proportional to the area of that segment. y (ft) 4.00 2.00 x(ft) 0- 0 4.00 6.00 8.00 2.00arrow_forwardA 35 N forearm (we are ignoring the hand for this problem) are held at a 45 deg angle to the vertically oriented humerus. The COM of the forearm is located at a distance of 15 cm from the joint center at the elbow, and the elbow flexor muscles have a 3 cm moment arm. How much force must be exerted by the elbow flexor muscles to maintain this position? Hide answer choices A A 35 N C 81.7 N 123.7 N D 371 N Fm 45° * --Wt₂arrow_forwardQ8arrow_forward
- The meterstick shown is 100 cm long. It is free to pivot around its center of gravity (CG), which is at the 50 cm 10 20 30 40 50 60 70 80 90 mark. There is a 20.0 N block hanging from the 80 cm mark. Decide where each of the other blocks should be placed, one at a time, to balance out the 20.0 N block. 3 2 1 At what mark on the meter stick would you place a 19.0 N block to balance the 20.0 N block? mark: cm At what mark on the meter stick would you place a 42.0 N block to balance the 20.0 N block? mark: cm about us careers privacy policy terms of use contact us help -8arrow_forwardThe meterstick shown is 100 cm long. It is free to pivot around its center of gravity (CG), which is at the 50 cm 10 20 30 40 50 60 70 80 90 mark. There is a 21.0 N block hanging from the 80 cm mark. Decide where each of the other blocks should be placed, one at a time, to balance out the 21.0 N block. 3 2 1 At what mark on the meter stick would you place a 16.0 N block to balance the 21.0 N block? mark: cm At what mark on the meter stick would you place a 44.0 N block to balance the 21.0 N block? mark: cmarrow_forwardA hippo’s body is 4.0 m long with front and rear feet located as shown. The hippo carries 60% of its weight on its front feet. How far from its tail is the hippo’s center of gravity?arrow_forward
- A 1.90-m-long barbell has a 21.0 kg weight on its left end and a 32.0 kg weight on its right end. If you ignore the weight of the bar itself, how far from the left end of the barbell is the center of gravity? Express your answer to three significant figures and include the appropriate units. Where is the center of gravity if the 9.00 kg mass of the barbell itself is taken into account? Express your answer to three significant figures and include the appropriate units.arrow_forwardWhen you bend over, a series of large muscles, the erector spinae, pull on your spine to hold you up. Figure shows a simplified model of the spine as a rod of length L that pivots at its lower end. In this model, the center of gravity of the 320 N weight of the upper torso is at the center of the spine. The 160 N weight of the head and arms acts at the top of the spine. The erector spinae muscles are modeled as a single muscle that acts at an 12° angle to the spine. Suppose the person shown bends over to an angle of 30° from the horizontal. a. What is the tension in the erector muscle? Hint: Align your x-axis with the axis of the spine.b. A force from the pelvic girdle acts on the base of the spine. What is the component of this force in the direction of the spine? (This large force is the cause of many back injuries).arrow_forwardAs shown, force F→2 acts half as far from the pivot as F→1 .What magnitude of F→2 causes the net torque on the rod to be zero?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning