College Physics: A Strategic Approach (3rd Edition)
3rd Edition
ISBN: 9780321879721
Author: Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 7, Problem 55GP
Figure P7.55 shows the angular position-versus-time graph for a particle moving in a circle.
Figure P7.55
a. Write a description of the particle’s motion.
b. Draw the
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Shown is the angular position-versus-time graph for a particle moving in a circle.a. Write a description of the particle’s motion.b. Draw the angular velocity-versus-time graph.
A propeller goes 1500 rpm to rest in 45 s.
a. What is the acceleration?
b. What is the angular displacement in the 5
seconds?
An automobile engine slows down from 3200 rpm to 1200 rpm in 2.0 s .
A.Calculate its angular acceleration, assumed constant.
B.Calculate the total number of revolutions the engine makes in this time.
Chapter 7 Solutions
College Physics: A Strategic Approach (3rd Edition)
Ch. 7 - The batter in a baseball game hits a home run. As...Ch. 7 - Viewed from somewhere in space above the north...Ch. 7 - Figure Q7.3 shows four pulleys, each with a heavy...Ch. 7 - If you are using a wrench to loosen a very...Ch. 7 - If you are using a wrench to loosen a very...Ch. 7 - A screwdriver with a very thick handle requires...Ch. 7 - If you have ever driven a truck, you likely found...Ch. 7 - A common type of door stop is a wedge made of...Ch. 7 - A student gives a steady push to a ball at the end...Ch. 7 - Prob. 10CQ
Ch. 7 - Prob. 11CQCh. 7 - If you grasp a hammer by its lightweight handle...Ch. 7 - Suppose you have two identical-looking metal...Ch. 7 - The moment of inertia of a uniform rod about an...Ch. 7 - The wheel in Figure Q7.15 is rolling to the right...Ch. 7 - With care, its possible to walk on top of a barrel...Ch. 7 - A nut needs to be tightened with a wrench. Which...Ch. 7 - Suppose a bolt on your car engine needs to be...Ch. 7 - Prob. 19MCQCh. 7 - A typical compact disk has a mass of 15 g and a...Ch. 7 - Suppose manufacturers increase the size of compact...Ch. 7 - Two horizontal rods are each held up by vertical...Ch. 7 - Prob. 23MCQCh. 7 - A particle undergoing circular motion in the...Ch. 7 - Questions 25 through 27 concern a classic...Ch. 7 - Questions 25 through 27 concern a classic...Ch. 7 - Questions 25 through 27 concern a classic...Ch. 7 - What is the angular position in radians of the...Ch. 7 - A child on a merry-go-round takes 3.0 s to go...Ch. 7 - What is the angular speed of the tip of the minute...Ch. 7 - An old-fashioned vinyl record rotates on a...Ch. 7 - The earths radius is about 4000 miles. Kampala,...Ch. 7 - A Ferris wheel rotates at an angular velocity of...Ch. 7 - A turntable rotates counterclockwise at 78 rpm. A...Ch. 7 - A fast-moving superhero in a comic book runs...Ch. 7 - Figure P7.9 shows the angular position of a...Ch. 7 - The angular velocity (in rpm) of the blade of a...Ch. 7 - The 1.00-cm-long second hand on a watch rotates...Ch. 7 - The earths radius is 6.37 106 m; it rotates once...Ch. 7 - To throw a discus, the thrower holds it with a...Ch. 7 - A computer hard disk starts from rest, then speeds...Ch. 7 - The crankshaft in a race car goes from rest to...Ch. 7 - Reconsider the situation in Example 7.10. If Luis...Ch. 7 - Balls are attached to light rods and can move in...Ch. 7 - Six forces, each of magnitude either F or 2F, are...Ch. 7 - What is the net torque about the axle on the...Ch. 7 - The tune-up specifications of a car call for the...Ch. 7 - A professors office door is 0.91 m wide, 2.0 m...Ch. 7 - In Figure P7.22, force F2, acts half as far from...Ch. 7 - Tom and Jerry both push on the 3.00-m-diameter...Ch. 7 - What is the net torque on the bar shown in Figure...Ch. 7 - What is the net torque on the bar shown in Figure...Ch. 7 - What is the net torque on the bar shown in Figure...Ch. 7 - Prob. 27PCh. 7 - Prob. 28PCh. 7 - Hold your arm outstretched so that it is...Ch. 7 - Prob. 30PCh. 7 - The 2.0 kg, uniform, horizontal rod in Figure...Ch. 7 - A 4.00-m-long, 500 kg steel beam extends...Ch. 7 - An athlete at the gym holds a 3.0 kg steel ball in...Ch. 7 - The 2.0-m-long, 15 kg beam in Figure P7.34 is...Ch. 7 - Two thin beams are joined end-to-end as shown in...Ch. 7 - Figure P7.36 shows two thin beams joined at right...Ch. 7 - A regulation table tennis ball is a thin spherical...Ch. 7 - Three pairs of balls are connected by very light...Ch. 7 - A playground toy has four seats, each 5.0 kg,...Ch. 7 - A solid cylinder with a radius of 4.0 cm has the...Ch. 7 - A bicycle rim has a diameter of 0.65 m and a...Ch. 7 - a. What is the moment of inertia of the door in...Ch. 7 - A small grinding wheel has a moment of inertia of...Ch. 7 - While sitting in a swivel chair, you push against...Ch. 7 - An objects moment of inertia is 2.0 kg m2. Its...Ch. 7 - A 200 g, 20-cm-diameter plastic disk is spun on an...Ch. 7 - The 2.5 kg object shown in Figure P7.47 has a...Ch. 7 - A frictionless pulley, which can be modeled as a...Ch. 7 - If you lift the front wheel of a poorly maintained...Ch. 7 - On page 207 there is a photograph of a girl...Ch. 7 - A toy top with a spool of diameter 5.0 cm has a...Ch. 7 - A bicycle with 0.80-m-diameter tires is coasting...Ch. 7 - Figure P7.55 shows the angular...Ch. 7 - The grap in Figure P7.56 shows the angular...Ch. 7 - A car with 58-cm-diameter tires accelerates...Ch. 7 - The cable lifting an elevator is wrapped around a...Ch. 7 - The 20-cm-diameter disk in Figure P7.59 can rotate...Ch. 7 - A combination lock has a 1.0-cm-diameter knob that...Ch. 7 - A 70 kg mans arm, including the hand, can be...Ch. 7 - The three masses shown in Figure P7.62 are...Ch. 7 - A reasonable estimate of the moment of inertia of...Ch. 7 - Starting from rest, a 12-cm-diameter compact disk...Ch. 7 - The ropes in Figure P7.65 are each wrapped around...Ch. 7 - Flywheels are large, massive wheels used to store...Ch. 7 - A 1.0 kg ball and a 2.0 kg ball are connected by a...Ch. 7 - A 1.5 kg block is connected by a rope across a...Ch. 7 - The two blocks in Figure P7.69 are connected by a...Ch. 7 - The 2.0 kg, 30-cm-diameter disk in Figure P7.70 is...Ch. 7 - A tradesman sharpens a knife by pushing it with a...Ch. 7 - MCAT-Style Passage Problems The Bunchberry The...Ch. 7 - The Bunchberry The bunchberry flower has the...Ch. 7 - The Bunchberry The bunchberry flower has the...Ch. 7 - The Bunchberry The bunchberry flower has the...Ch. 7 - Prob. 76MSPPCh. 7 - Prob. 77MSPPCh. 7 - Prob. 78MSPP
Additional Science Textbook Solutions
Find more solutions based on key concepts
explain the function of fermentation and the conditions under which it occurs?
Biology: Life on Earth with Physiology (11th Edition)
Albinism in humans is inherited as a simple recessive trait. For the following families, determine the genotype...
Concepts of Genetics (12th Edition)
A source of electromagnetic radiation produces infrared light. Which of the following could be the wavelength ...
Chemistry: The Central Science (14th Edition)
8. A human maintaining a vegan diet (containing no animal products) would be a:
a. producer
b. primary consume...
Human Biology: Concepts and Current Issues (8th Edition)
In the fruit fly Drosophila, a rudimentary wing called vestigial and dark body color called ebony are inher-ite...
Genetic Analysis: An Integrated Approach (3rd Edition)
Modified True/False 6. __________ Halophiles inhabit extremely saline habitats, such as the Great Salt Lake.
Microbiology with Diseases by Body System (5th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- During the spin cycle of a washing machine, the clothes stick to the outer wall of the barrel as it spins at a rate as high as 1800 revolutions per minute. The radius of the barrel is 26 cm (0.26 m). a. Determine the speed of the clothes (in m/s) that are located on the wall of the spin barrel. b. Determine the acceleration of the clothes, and select the appropriate units for acceleration.arrow_forward12. A 0.20 kg block on a 0.50-m-long string swings in a circle on a horizontal, frictionless table at 75 rpm. A. What is the speed of the block? B. What is the tension in the string?arrow_forwardA frictionless rolling cart has an initial velocity of 10.0 m/s as it climbs up anincline of 24 degrees .a. What is the cart’s height above the ground when it monetarily comes to astop on the ramp?b. At that instant, how far has it travelled along the ramp?arrow_forward
- A ride rotates at, θ(t) = (π/4) t − (π/16)t2 + (π/24)t3 . i. What is the angular velocity as a function of time ω(t)? ii. What is the angular acceleration as a function of time α(t)? iii. What is the angular velocity at t = 4 s?arrow_forwardA model of a helicopter rotor has four blades, each of length 3.4 mm from the central shaft to the blade tip. The model is rotated in a wind tunnel at a rotational speed of 500 rev/minrev/min. 1. What is the linear speed of the blade tip? Express your answer in meters per second. 2. What is the radial acceleration of the blade tip expressed as a multiple of the acceleration due to gravity, gg? Express your answer as a multiple of gg. 3.arrow_forwardA particle moves in the xy plane in a circle centered on the origin. At a certain instant, the velocity and acceleration of the particle are 4.0 i m/s and (-3.0i + 2.0 j) m/s². What are the x and y coordinates of the particle at this moment? .A. x = -5.3 m, y = 0 x = +5.3 m, y = 0 C. x = 0 m, y = +8 m O D. x = 0 m, y = -8marrow_forward
- A roller coaster car rolls down a frictionless track, reaching speed ν at the bottom.a. If you want the car to go twice as fast at the bottom, by what factor must you increase the height of the track?b. Does your answer to part a depend on whether the track is straight or not? Explain.arrow_forwardThe 32-inch ceiling fan spins at 60 RPM and accelerates steadily to 130 RPM in nine seconds. A. Determine the speed (ft / s with two decimal places) for the point 15 inches from the center of the fan 16 seconds after the beginning of the above movement. B. Specify the time (s with two decimal places) for the fan to rotate 125 revolutions. Draw a Free Body Diagram if necessary in part A or part B or both. Please urgent ??? thank youarrow_forwardA tesla starts from rest on an unbanked circular track of radius 100m and speeds up at a steady rate of 0.100m/s^2. The coefficient of static friction between the tires and the road is 0.642. a. How much time passes before the radial acceleration of the car is 10 times its tangential acceleration? b. What is the maximum safe speed (in km/h) before the tesla slips off the track c. How many revolutions around the track can be safely completed?arrow_forward
- QC A bicycle is turned upside down while its owner repairs a flat tire. A friend spins the other A wheel and observes that drops of water fly off tan- gentially. She measures the heights reached by drops moving vertically (Fig. P7.8). A drop that breaks loose from the Figure P7.8 Problems 8 and 69. tire on one turn rises vertically 54.0 cm above the tangent point. A drop that breaks loose on the next turn rises 51.0 cm above the tan- gent point. The radius of the wheel is 0.381 m. (a) Why does the first drop rise higher than the second drop? (b) Neglecting air friction and using only the observed heights and the radius of the wheel, find the wheel's angular acceleration (assuming it to be constant).arrow_forwardAn automobile engine slows down from 3600 rpm to 1400 rpm in 2.5 s. Part A Calculate its angular acceleration, assumed constant. Express your answer using two significant figures. nothing Part B Calculate the total number of revolutions the engine makes in this time. Express your answer as an integerarrow_forwardOn an otherwise straight stretch of road near Netherland, Colorado, the suddenly turns. This bend in the road is a segment of a circle of radius 110m. Drivers are cautioned to slow down to 75km/h as they navigate the curve. A. Draw a useful picture for this situation, indicating directions of the acceleration and velocity as the car goes around the curve. B. If you heed the sign and slow to this speed as you go around the curve, what will be your acceleration? C. At what speed will your acceleration be double that of part B?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
What Is Circular Motion? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=1cL6pHmbQ2c;License: Standard YouTube License, CC-BY