Concept explainers
(a)
Interpretation:
Estimate whether it is possible for the average gas-phase composition in the tank to be within the explosive limits at any time. Explain you answer.
Concept introduction:
The
Where, the volume (V) occupied by ‘n’ moles of any gas has a pressure (P) at temperature (T) in Kelvin and ‘R’ = Gas constant
(b)
Interpretation:
The temperature at which the gas tank to be at lower explosive limit should be determined.
Concept introduction:
The Ideal Gas Law is defined as,
Where, the volume (V) occupied by ‘n’ moles of any gas has a pressure (P) at temperature (T) in Kelvin and ‘R’ = Gas constant
Antoine equation
Antoine equations describe the relationship between vapor pressure and temperature for pure components. This is a semi-empirical relationship.
(c)
Interpretation:
Why is the tank purged thoroughly with steam after being drained should be explained.
Concept introduction:
The Ideal Gas Law is defined as,
Where, the volume (V) occupied by ‘n’ moles of any gas has a pressure (P) at temperature (T) in Kelvin and ‘R’ = Gas constant
Antoine equation
Antoine equations describe the relationship between vapor pressure and temperature for pure components. This is a semi-empirical relationship.
Want to see the full answer?
Check out a sample textbook solutionChapter 6 Solutions
Elementary Principles of Chemical Processes, Binder Ready Version
- 4. An experimental test rig is used to examine two-phase flow regimes in horizontal pipelines. A particular experiment involved uses air and water at a temperature of 25°C, which flow through a horizontal glass tube with an internal diameter of 25.4 mm and a length of 40 m. Water is admitted at a controlled rate of 0.026 kgs at one end and air at a rate of 5 x 104 kgs in the same direction. The density of water is 1000 kgm³, and the density of air is 1.2 kgm3. Determine the mass flow rate, the mean density, gas void fraction, and the superficial velocities of the air and water. Answer: 0.02605 kgs 1, 61.1 kgm³, 0.94, 0.822 ms-1, 0.051 ms-1arrow_forward1. Determine the range of mean density of a mixture of air in a 50:50 oil-water liquid phase across a range of gas void fractions. The den- sity of oil is 900 kgm³, water is 1000 kgm³, and gas is 10 kgm³. 2. Describe, with the use of sketches, the various flow regimes that can exist in a vertical pipe carrying two-phase flow (liquid and gas).arrow_forwardA mixture of high pressure water and steam at a rate of 0.5 kgs-¹ flows up a vertical tube with an inside diameter of 25.4 mm at a pres- sure 22 bar. Determine the type of flow if the mass quality is 1%. The density of the water is 845 kgm³, the density of steam is 10.8 kgm³, and the viscosity of the water is 1.24 x 104 Nsm2. Answer: Slug flowarrow_forward
- 5. Describe, with the use of sketches, the various two-phase flow regimes that can exist in a horizontal pipe carrying a liquid and a gas. 6. Explain what is meant by gas hold-up and describe ways in which it can be measured.arrow_forwardA mixture of air and water at a temperature of 25°C flows up through a vertical tube with a length of 4 m and an internal diameter of 25.4 mm with the exit of the tube being at atmospheric pressure. The mass flows of the air and the water are 0.007 kgs¹ and 0.3 kgs-¹, respectively. For air, the density is 1.2 kgm3 and viscosity is 1.85 x 10-5 Nsm-2, and for water, the density is 1000 kgm-3 and viscosity is 8.9 × 10-4 Nsm 2. Answer: 2.7 kNm 2marrow_forwardAt a Pressure of 200 mm Hg, match the substance with the boiling temperature. 69.50°C 1. Benzene 1.92°C 2. Toluene 41.94°C 3. n-Pentane 4. n-Hexane 31.61°Carrow_forward
- At a Pressure of 400 mm Hg, match the substance with the boiling temperature. 62.89°C 1. Styrene 122.69°C 2. Ethanol 3. Toluene 89.48°C 4. Benzene 60.61°Carrow_forward8. A gas is admitted at a rate of 0.015 m³s-¹ to a vertical glass pipe with an inside diameter of 50 mm. The gas bubbles that form travel with a velocity of 32 ms-¹. Determine the gas void fraction and the velocity of the liquid if the volumetric flow is 2.5 x 10-5 m³s-1. Answer: 0.24, 1.7 ms-1 9 Characterise the main concepts of a homogeneous flow model sepa-arrow_forward3. A mixture of air and water at a temperature of 25°C flows up through a vertical tube with a length of 4 m and an internal diameter of 25.4 mm with the exit of the tube being at atmospheric pressure. The mass flows of the air and the water are 0.007 kgs-1 and 0.3 kgs-1, respectively. For air, the density is 1.2 kgm³ and viscosity is 1.85 x 10-5 Nsm-2, and for water, the density is 1000 kgm-3 and viscosity is 8.9 × 10-4 Nsm-2. Answer: 2.7 kNm-2m-1arrow_forward
- 15. Show that for a one-dimensional annular flow in a horizontal pipe with no acceleration, the pressure gradient on the gas core is dp= 4ti dz d√√α where t, is the interfacial shear stress and a is the gas void fraction.arrow_forwarda gas. Problems in Two phase flow docx horizontal pipe carrying a liquid and that can exist in 6. Explain what is meant by gas hold-up and describe ways in which it can be measured. Ets required to transporta ydrocarbon as a two-phase mixture ofarrow_forward7. It is required to transport a hydrocarbon as a two-phase mixture of liquid and vapour along a smooth-walled pipe with an inside diam- eter of 100 mm. The total hydrocarbon flow rate is 2.4 kgs-1 with a vapour mass fraction of 0.085. The pipe is to operate at an absolute pressure of 2.2 bar. The liquid density is 720 kgm³, and viscosity is 4.8 × 10-4 Nsm², while for the vapour, the density is 1.63 kgm³, and the viscosity is 2.7 x 10-5 Nsm-2. Determine the maximum per- missible length of pipe if the pressure drop along the pipe is not to exceed 20 kNm-2. Answer: 44 marrow_forward
- Introduction to Chemical Engineering Thermodynami...Chemical EngineeringISBN:9781259696527Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark SwihartPublisher:McGraw-Hill EducationElementary Principles of Chemical Processes, Bind...Chemical EngineeringISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEYElements of Chemical Reaction Engineering (5th Ed...Chemical EngineeringISBN:9780133887518Author:H. Scott FoglerPublisher:Prentice Hall
- Industrial Plastics: Theory and ApplicationsChemical EngineeringISBN:9781285061238Author:Lokensgard, ErikPublisher:Delmar Cengage LearningUnit Operations of Chemical EngineeringChemical EngineeringISBN:9780072848236Author:Warren McCabe, Julian C. Smith, Peter HarriottPublisher:McGraw-Hill Companies, The