Elementary Principles of Chemical Processes, Binder Ready Version
Elementary Principles of Chemical Processes, Binder Ready Version
4th Edition
ISBN: 9781118431221
Author: Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher: WILEY
bartleby

Concept explainers

Question
Book Icon
Chapter 6, Problem 6.15P
Interpretation Introduction

(a)

Interpretation:

The rate of intake of air at ambient conditions in cubic feet per minute needs to be determined.

Concept introduction:

In air the humidity plays a very important role in our daily life and it is also important for the weather because the weather depending on humidity and without humidity there is no weather and it is dangerous to live on earth. There are two main types of humidity which is relative humidity and absolute humidity.

The volume of Air at ambient condition is calculated as:

va=mva1wa

Here,

wa=Humidityratioatambientconditionva=SpecificHumidityatambientconditionwi=Humidityratioatinletconditionvi=SpecificHumidityatinletcondition

Interpretation Introduction

(b)

Interpretation:

The number of hours of operation required to fill the cistern needs to be determined.

Concept introduction:

In air the humidity plays a very important role in our daily life and it is also important for the weather because the weather depending on humidity and without humidity there is no weather and it is dangerous to live on earth. There are two main types of humidity which is relative humidity and absolute humidity.

Here,

wa=Humidityratioatambientconditionva=SpecificHumidityatambientconditionwi=Humidityratioatinletconditionvi=SpecificHumidityatinletcondition

The time required in hours of operation required to fill the cistern as follows:

t=VolumeofCisternVolumeofwaterremovalperminute

Blurred answer
Students have asked these similar questions
← Homework 8 View Policies Show Attempt History Current Attempt in Progress A liquid mixture of benzene and toluene containing 52.0 wt% benzene at 100.0 °C and pressure Po atm is fed at a rate of 32.5 m³/h into a heated flash tank maintained at a pressure Ptank Material Balances Correct. 0.67/1 === Attempts: 1 of 5 used Calculate Ptank (atm), the mole fraction of benzene in the vapor, and the molar flow rates of the liquid and vapor products. Ptank .544 atm Ybz .657 mol benzene/mol vapor product nvapor 55.8 mol/s nliquid 37.6 mol/s Hint GO Tutorial Energy Balance Check heat capacities. Calculate the required heat input rate in kilowatts. i 0.447 kW Hint GO Tutorial Save for Later Assistance Used Attempts: 2 of 5 used Assistance Used Attempts: 1 of 5 used Submit Answer
View Policies Show Attempt History Current Attempt in Progress Homework 8 A stream of pure cyclopentane vapor flowing at a rate of 1650 L/s at 190.0°C and 1 atm enters a cooler in which 50.0% of the feed is condensed at constant pressure. Question 4 of 5 Correct What is the temperature at the condenser outlet? 49.3 °℃ eTextbook and Media Hint Enthalpy Table Your Answer Correct Answer (Used) 0.67/1 E Attempts: 1 of 5 used Prepare and fill in an inlet-outlet enthalpy table. Use a reference state of liquid cyclopentane at the boiling point. In T = 190.0°C Out T=49.3°C Substance n (mol/s) Ĥ (kJ/mol) n (mol/s) Ĥ (kJ/mol) C5H10(1) 0.0 21.708 0.0 C5H10(V) 43.416 43.687 21.708 27.30 Heat Check significant figures and sign. Calculate the required cooling rate (a positive number). ! kW Hint Save for Later Attempts: 3 of 5 used Submit Answer
View Policies Show Attempt History Current Attempt in Progress A liquid mixture of benzene and toluene containing 52.0 wt% benzene at 100.0 °C and pressure Po atm is fed at a rate of 32.5 m³/h into a heated flash tank maintained at a pressure Ptank Your answer is partially correct. 1.312 atm Assistance Used 0.58/1 Calculate Ptank (atm), the mole fraction of benzene in the vapor, and the molar flow rates of the liquid and vapor products. Ptank i atm .657 Ybz mol benzene/mol vapor product nvapor 55.8 mol/s nliquid 37.6 mol/s Hint GO Tutorial Save for Later Energy Balance Calculate the required heat input rate in kilowatts. i kW GO Tutorial Save for Later Assistance Used Attempts: 1 of 5 used Submit Answer Assistance Used Attempts: 0 of 5 used Submit Answer

Chapter 6 Solutions

Elementary Principles of Chemical Processes, Binder Ready Version

Ch. 6 - Prob. 6.11PCh. 6 - Prob. 6.12PCh. 6 - Prob. 6.13PCh. 6 - Air at 50% relative humidity is cooled...Ch. 6 - Prob. 6.15PCh. 6 - Prob. 6.16PCh. 6 - Air at 90°C and 1.00 atm (absolute) contains 10.0...Ch. 6 - When fermentation units are operated with high...Ch. 6 - When you step out of a shower, the temperature in...Ch. 6 - A fuel cell is an electrochemical device in which...Ch. 6 - Prob. 6.21PCh. 6 - Prob. 6.22PCh. 6 - Prob. 6.23PCh. 6 - Prob. 6.24PCh. 6 - Prob. 6.25PCh. 6 - Prob. 6.26PCh. 6 - Prob. 6.27PCh. 6 - Prob. 6.28PCh. 6 - An air conditioner is designed to bring 10.000...Ch. 6 - Prob. 6.30PCh. 6 - Prob. 6.31PCh. 6 - Prob. 6.32PCh. 6 - A gas stream containing 40.0 mole% hydrogen, 35.0%...Ch. 6 - Prob. 6.34PCh. 6 - In the manufacture of an active pharmaceutical...Ch. 6 - Prob. 6.36PCh. 6 - In the ?nal stage of the manufacturing process...Ch. 6 - Prob. 6.38PCh. 6 - A fuel gas containing methane and ethane is burned...Ch. 6 - A mixture of propane and butane is burned with...Ch. 6 - An important parameter in the design of gas...Ch. 6 - A liquid stream consisting of 12.5 mole% n-butane...Ch. 6 - Nitric acid is a chemical intermediate primarily...Ch. 6 - Prob. 6.44PCh. 6 - Sulfur trioxide (SO3) dissolves in and reacts with...Ch. 6 - State whether you would use Raoult’s law or Henrys...Ch. 6 - A gas containing nitrogen, benzene, and toluene is...Ch. 6 - Prob. 6.48PCh. 6 - Prob. 6.49PCh. 6 - A conelation for methane solubility in...Ch. 6 - Prob. 6.51PCh. 6 - The constituent partial pressures of a gas in...Ch. 6 - Prob. 6.53PCh. 6 - Prob. 6.54PCh. 6 - Prob. 6.55PCh. 6 - Prob. 6.56PCh. 6 - Prob. 6.57PCh. 6 - Prob. 6.58PCh. 6 - Nitrogen is bubbled through a liquid mixture that...Ch. 6 - Prob. 6.60PCh. 6 - Prob. 6.61PCh. 6 - Prob. 6.62PCh. 6 - The feed to a distillation column (sketched below)...Ch. 6 - Prob. 6.64PCh. 6 - Prob. 6.65PCh. 6 - Prob. 6.66PCh. 6 - Prob. 6.67PCh. 6 - Prob. 6.68PCh. 6 - Prob. 6.69PCh. 6 - Prob. 6.70PCh. 6 - A methanol-water feed stream is introduced to a...Ch. 6 - Prob. 6.72PCh. 6 - In this problem you will use a spreadsheet to...Ch. 6 - Prob. 6.74PCh. 6 - Prob. 6.75PCh. 6 - Prob. 6.76PCh. 6 - Acetaldehyde is synthesized by the catalytic...Ch. 6 - Dehydration of natural gas is necessary to prevent...Ch. 6 - A two-unit process is used to separate H2S from a...Ch. 6 - Prob. 6.80PCh. 6 - Prob. 6.81PCh. 6 - Prob. 6.82PCh. 6 - Prob. 6.83PCh. 6 - A solution containing 100 lbm KNO3/100 Ibm H2O at...Ch. 6 - A 10.0 wt% aqueous solution of sodium chloride is...Ch. 6 - Potassium dichromate (K2Cr2O7) is to be recovered...Ch. 6 - Prob. 6.87PCh. 6 - Prob. 6.88PCh. 6 - Sodium bicarbonate is synthesized by reacting...Ch. 6 - An ore containing 90 wt% MgSO4(H2O and the balance...Ch. 6 - An aqueous waste stream leaving a process contains...Ch. 6 - A solution of diphenyl (MW = 154.2) in benzene is...Ch. 6 - An aqueous solution of urea (MW = 60.06) freezes...Ch. 6 - Prob. 6.94PCh. 6 - Derive Equation 6.54 for the boiling-point...Ch. 6 - Prob. 6.96PCh. 6 - A stream of 5.00 wt% oleic acid in cottonseed oil...Ch. 6 - Benzene and hexane are being considered as...Ch. 6 - Acetone is lo be extracted with n-hexane from a...Ch. 6 - Prob. 6.100PCh. 6 - Prob. 6.101PCh. 6 - Five kilograms of a 30 wt% acetone70% water...Ch. 6 - An aqueous acetone solution is fed at a rate of...Ch. 6 - Prob. 6.104PCh. 6 - Prob. 6.105PCh. 6 - Air at 25°C and 1 atm with a relative humidity of...Ch. 6 - Prob. 6.107PCh. 6 - Prob. 6.108PCh. 6 - Various amounts of activated carbon were added to...
Knowledge Booster
Background pattern image
Chemical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introduction to Chemical Engineering Thermodynami...
Chemical Engineering
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:McGraw-Hill Education
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemical Engineering
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Text book image
Elements of Chemical Reaction Engineering (5th Ed...
Chemical Engineering
ISBN:9780133887518
Author:H. Scott Fogler
Publisher:Prentice Hall
Text book image
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:9781119285915
Author:Seborg
Publisher:WILEY
Text book image
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:9781285061238
Author:Lokensgard, Erik
Publisher:Delmar Cengage Learning
Text book image
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:9780072848236
Author:Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:McGraw-Hill Companies, The