Concept explainers
The beam AB supports two concentrated loads P and Q. The normal stress due to bending on the bottom edge of the beam is +55 MPa at D and +37.5 MPa at F. (a) Draw the shear and bending-moment diagrams for the beam. (b) Determine the maximum normal stress due to bending that occurs in the beam.
Fig. P5.62
(a)
Draw the shear and bending-moment diagrams for the beam.
Explanation of Solution
Given information:
The normal stress due to bending at the point D is
The normal stress due to bending at the point F is
Determine the section modulus (S) of the rectangular beam section using the equation.
Here, the width of the beam is b and the depth of the beam is h.
Substitute 24 mm for b and 60 mm for h.
Determine the bending moment at point D
Here, the normal stress at point D is
Substitute 55 MPa for
Determine the bending moment at point F
Here, the normal stress at point F is
Substitute 37.5 MPa for
Show the free-body diagram of the region FB as in Figure 1.
Determine the vertical reaction at point B by taking moment about point F.
Show the free body diagram of the region DEFB as in Figure 2.
Determine the magnitude of the load Q by taking moment about the point D.
Show the free body diagram of the entire beam as in Figure 3.
Determine the magnitude of the load P by taking moment about the point A.
Determine the vertical reaction at point A by resolving the vertical component of forces.
Shear force:
Show the calculation of shear force as follows;
Show the calculated shear force values as in Table 1.
Location (x) m | Shear force (V) N |
A | 3600 |
C (Left) | 3600 |
C (Right) | 360 |
E (Left) | 360 |
E (Right) | –1800 |
B | –1800 |
Plot the shear force diagram as in Figure 4.
Bending moment:
Show the calculation of the bending moment as follows;
Show the calculated bending moment values as in Table 2.
Location (x) m | Bending moment (M) N-m |
A | 0 |
C | 720 |
E | 900 |
B | 0 |
Plot the bending moment diagram as in Figure 5.
Refer to Figure 5;
The maximum absolute bending moment is
(b)
The maximum normal stress due to bending.
Answer to Problem 62P
The maximum normal stress due to bending is
Explanation of Solution
Given information:
Determine the section modulus (S) of the rectangular beam section using the equation.
Here, the width of the beam is b and the depth of the beam is h.
Substitute 24 mm for b and 60 mm for h.
The maximum absolute bending moment is
Determine the maximum normal stress
Substitute
Therefore, the maximum normal stress due to bending is
Want to see more full solutions like this?
Chapter 5 Solutions
Mechanics of Materials, 7th Edition
- 7arrow_forward5.82 The simply supported wood beam, fabricated by gluing together fourwooden boards, carries the three concentrated forces. The working bending and shear stresses for the wood are 1000 psi and 600 psi, respectively. Determine the largest allowable value of the force P.arrow_forwardStrength of Materialsarrow_forward
- Draw the shear and moment diagram. Find the maximum bending stress and its location.arrow_forwardDraw the shear and moment diagram. Find the maximum bending stress and its location.arrow_forwardDraw the shear and bending-moment diagrams for the beam and loading shown and determine the maximum normal stress due to bendingarrow_forward
- I need help solving Problem 5.30 5.29) Knowing that P = Q = 480 N, determine (a) the distance a for which the absolute value of the bending moment in the beam is as small as possible, (b) the corresponding maximum normal stress due to bending. (See hint of Prob. 5.27. 5.30) Solve Prob. 5.29, assuming that P = 480 N and Q = 320 N.arrow_forward5.41 The inverted T-beam supports three concentrated loads as shown in the fig- ure. Find the maximum allowable value of Pif the bending stresses are not to exceed 3.5 ksi in tension and 8 ksi in compression. 14P 1.0 in. D 8 in. 1.0 in. 2 ft 3 ft 3 (t 2 tt - 4 int FIG. PS.41arrow_forwardd 5.23 Draw the shear and bending-moment diagrams for the beam and loading shown and determine the maximum normal stress due to bending. 80 kN/m 160 kN B C ID A E Hinge- W310 × 60 -2.4 m 1.5 m 1.5 m 0.6 marrow_forward
- PROBLEM 5.21 For the beam and loading shown, determine the maximum bending stress on a transverse section at C. [Ans. 10.89 MPa] 10 kN 3 kN/m 100 mm 25 de 200 mm B 1.5 m 1.5 m X-X 2.2 m splay E23 Fig. P5.21 Chp Show all 205 14 04/22 ALING • SPARKLING PURDEY'S NATURAL ENERGT REFOCUS Dark Fruits with guarana Paune hp Prien Sem Sysha Scroll Serril Lock F11 F10 F9 Num Lock F8 Page Up F7 F6 Home F5 bert F4 7 Page Down Home End Deletearrow_forwardA cable AB of span L and a simple beam A'B' of the same span are subjected to identical vertical loadings as shown. Show that the magnitude of the bending moment at a point C' in the beam is equal to the product T0h, where T0 is the magnitude of the horizontal component of the tension force in the cable and h is the vertical distance between point C and the chord joining the points of support A and B.arrow_forward4.28 Construct the shear force and bending moment diagrams for the beamshown by the area method. Neglect the weight of the beamarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY