Concept explainers
Draw the shear and bending-moment diagrams for the beam and loading shown, and determine the maximum absolute value (a) of the shear, (b) of the bending moment.
Fig. P5.152
(a)
Draw: The shear force diagram for the beam and loading.
Find the maximum absolute value of the shear.
Answer to Problem 152RP
The maximum absolute value of the shear force is
Explanation of Solution
Show the free-body diagram of the entire beam as in Figure 1.
Determine the vertical reaction at point B by taking moment about point A.
Determine the vertical reaction at point A by resolving the vertical component of forces.
Show the free-body diagram of the sections as in Figure 2.
Section AC (1-1):
Determine the shear force at the section by resolving the vertical component of forces.
Section CD (2-2):
Determine the shear force at the section by resolving the vertical component of forces.
Section DB (3-3):
Determine the shear force at the section by resolving the vertical component of forces.
Show the calculated shear force values as in Table 1.
Location (x) mm | Shear force (V) N |
A (0 mm) | 85 |
C (1-1) (250 mm) | 85 |
C (2-2) (250 mm) | 10 |
D (2-2) (500 mm) | 10 |
D (3-3) (500 mm) | –65 |
B (750 mm) | –65 |
Plot the shear force diagram as in Figure 3.
Refer to the Figure 3;
The maximum absolute value of the shear force is
(b)
Draw the bending moment diagram for the beam and loading.
Find the maximum absolute value of the bending moment.
Answer to Problem 152RP
The maximum absolute value of the bending moment is
Explanation of Solution
Show the free-body diagram of the entire beam as in Figure 4.
Determine the vertical reaction at point B by taking moment about point A.
Determine the vertical reaction at point A by resolving the vertical component of forces.
Show the free-body diagram of the sections as in Figure 5.
Section AC (1-1):
Determine the bending moment at the section by taking moment about the section.
Section CD (2-2):
Determine the bending moment at the section by taking moment about the section.
Section DB (3-3):
Determine the bending moment at the section by taking moment about the section.
Show the calculated bending moment values as in Table 2.
Location (x) mm | Bending moment (V) N-mm |
A (0 mm) | 0 |
C (1-1) (250 mm) | 21250 |
C (2-2) (250 mm) | 17500 |
D (2-2) (500 mm) | 20000 |
D (3-3) (500 mm) | 16250 |
B (750 mm) | 0 |
Plot the bending moment diagram as in Figure 6.
Refer to the Figure 6;
The maximum absolute value of the bending moment is,
The maximum absolute value of the bending moment is
Want to see more full solutions like this?
Chapter 5 Solutions
Mechanics of Materials, 7th Edition
- Mych CD 36280 kg. 0.36 givens Tesla truck frailer 2017 Model Vven 96154kph ronge 804,5km Cr Powertrain Across PHVAC rwheel 0.006 0.88 9M² 2 2kW 0.55M ng Zg Prated Trated Pair 20 0.95 1080 kW 1760 Nm 1,2 determine the battery energy required to meet the range when fully loaded determine the approximate time for the fully-loaded truck-trailor to accelerate from 0 to 60 mph while Ignoring vehicle load forcesarrow_forward12-217. The block B is sus- pended from a cable that is at- tached to the block at E, wraps around three pulleys, and is tied to the back of a truck. If the truck starts from rest when ID is zero, and moves forward with a constant acceleration of ap = 0.5 m/s², determine the speed of the block at D the instant x = 2 m. Neglect the size of the pulleys in the calcu- lation. When xƊ = 0, yc = 5 m, so that points C and D are at the Prob. 12-217 5 m yc =2M Xparrow_forwardsolve both and show matlab code auto controlsarrow_forward
- 12-82. The roller coaster car trav- els down the helical path at con- stant speed such that the paramet- ric equations that define its posi- tion are x = c sin kt, y = c cos kt, z = h - bt, where c, h, and b are constants. Determine the mag- nitudes of its velocity and accelera- tion. Prob. 12-82 Narrow_forwardGiven: = refueling Powertran SOURCE EMISSIONS vehide eff eff gasoline 266g co₂/kwh- HEV 0.90 0.285 FLgrid 411ilg Co₂/kWh 41111gCo₂/kWh EV 0.85 0.80 Production 11x10% og CO₂ 13.7 x 10°g CO₂ A) Calculate the breakeven pont (in km driven) for a EV against on HEV in Florida of 0.1kWh/kM Use a drive cycle conversion 5) How efficient would the powertrain of the HEV in this example have to be to break even with an EV in Florida after 150,000 Miles of service (240,000) km Is it plausible to achieve the answer from pert b Consideans the HaXINERY theoretical efficiency of the Carnot cycle is 5020 and there are additional losses of the transMISSION :- 90% efficiency ? c A what do you conclude is the leading factor in why EVs are less emissive than ICE,arrow_forwardsolve autocontrolsarrow_forward
- Problem 3.21P: Air at 100F(38C) db,65F(18C) wb, and sea-level pressure is humidified adiabatically with steam. The steam supplied contains 20 percent moisture(quality of 0.80) at 14.7psia(101.3kpa). The air is humidified to 60 percent relative humidity. Find the dry bulb temperature of the humidified air using (a)chart 1a or 1b and (b) the program PSYCH.arrow_forwardPUNTO 4. calculate their DoF using Gruebler's formula. PUNTO 5. Groundarrow_forwardPUNTO 2. PUNTO 3. calculate their DoF using Gruebler's formula. III IAarrow_forward
- calculate their DoF using Gruebler's formula. PUNTO 6. PUNTO 7. (Ctrl)arrow_forwardA pump delivering 230 lps of water at 30C has a 300-mm diameter suction pipe and a 254-mm diameter discharge pipe as shown in the figure. The suction pipe is 3.5 m long and the discharge pipe is 23 m long, both pipe's materials are cast iron. The water is delivered 16m above the intake water level. Considering head losses in fittings, valves, and major head loss. a) Find the total dynamic head which the pump must supply. b)It the pump mechanical efficiency is 68%, and the motor efficiency is 90%, determine the power rating of the motor in hp.given that: summation of K gate valve = 0.25check valve=390 degree elbow= 0.75foot valve= 0.78arrow_forwardA pump delivering 230 lps of water at 30C has a 300-mm diameter suction pipe and a 254-mm diameter discharge pipe as shown in the figure. The suction pipe is 3.5 m long and the discharge pipe is 23 m long, both pipe's materials are cast iron. The water is delivered 16m above the intake water level. Considering head losses in fittings, valves, and major head loss. a) Find the total dynamic head which the pump must supply. b)It the pump mechanical efficiency is 68%, and the motor efficiency is 90%, determine the power rating of the motor in hp.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY