![Mechanics of Materials, 7th Edition](https://www.bartleby.com/isbn_cover_images/9780073398235/9780073398235_largeCoverImage.gif)
Concept explainers
5.1 through 5.6 For the beam and loading shown, (a) draw the shear and bending-moment diagrams, (b) determine the equations of the shear and bending-moment curves.
Fig. P5.2
(a)
![Check Mark](/static/check-mark.png)
To draw: The shear and bending-moment diagrams.
Explanation of Solution
Determine the reactions of the beam.
Show the free-body diagram of the entire beam as in Figure 1.
Determine the vertical reaction at point C by taking moment about point A.
Determine the vertical reaction at point A by resolving the vertical component of forces.
Substitute
Determine the horizontal direction at point A by resolving the horizontal component of forces.
Show the free-body diagram of the section 1-1 and 2-2 as in Figure 2.
Section 1-1:
Determine the shear force at the section by resolving the vertical component of forces.
Determine the moment at the section by taking moment about the section.
Section 2-2:
Determine the shear force at the section by resolving the vertical component of forces.
Determine the moment at the section by taking moment about the section.
Show the free-body diagram of the section 3-3 and 4-4 as in Figure 3.
Section 3-3:
Determine the shear force at the section by resolving the vertical component of forces.
Determine the moment at the section by taking moment about the section.
When the section 3-3 is at point B,
Section 4-4:
Determine the shear force at the section by resolving the vertical component of forces.
Determine the moment at the section by taking moment about the section.
Shear force and bending moment values:
Show the calculated shear force and bending moment values as in Table 1.
Location (x) | Shear force (V) | Bending Moment (M) |
1-1 | 0 | |
2-2 | ||
3-3 | ||
4-4 | 0 |
Plot the shear force and bending moment diagrams as in Figure 4.
(b)
![Check Mark](/static/check-mark.png)
The equations of the shear and bending-moment curves.
Answer to Problem 2P
The equation of shear force and bending-moment curves is:
For section AB;
For section BC;
Explanation of Solution
Determine the reactions of the beam.
Show the free-body diagram of the entire beam as in Figure 5.
Determine the vertical reaction at point C by taking moment about point A.
Determine the vertical reaction at point A by resolving the vertical component of forces.
Substitute
Determine the horizontal direction at point A by resolving the horizontal component of forces.
Show the free-body diagram of the section 1-1 and 2-2 as in Figure 6.
Section 1-1:
Determine the shear force at the section by resolving the vertical component of forces.
Determine the moment at the section by taking moment about the section.
Section 2-2:
Determine the shear force at the section by resolving the vertical component of forces.
Determine the moment at the section by taking moment about the section.
Show the free-body diagram of the section 3-3 and 4-4 as in Figure 7.
Section 3-3:
Determine the shear force at the section by resolving the vertical component of forces.
Determine the moment at the section by taking moment about the section.
When the section 3-3 is at point B,
Section 4-4:
Determine the shear force at the section by resolving the vertical component of forces.
Determine the moment at the section by taking moment about the section.
Therefore, the equation of shear force and bending-moment curves is:
For section AB;
For section BC;
Want to see more full solutions like this?
Chapter 5 Solutions
Mechanics of Materials, 7th Edition
- Copyright 2013 Pearson Education, publishing as Prentice Hall 2. Determine the force that the jaws J of the metal cutters exert on the smooth cable C if 100-N forces are applied to the handles. The jaws are pinned at E and A, and D and B. There is also a pin at F. E 400 mm 15° D B 30 mm² 80 mm/ 20 mm 15° $15° 20 mm 400 mm 15° 100 N 100 N 15°arrow_forwardDraw for it make a match which directionarrow_forwardQ.1) Block A is connected to block B by a pulley system as shown. The weights of blocks A and B are 100 lbs and 70 lbs, respectively. Assume negligible friction between the rope and all pulleys as well as between block B and the incline and neglect the mass of all pulleys and cables. Determine the angle 0 required to keep the system in equilibrium. (At least two FBDs must be drawn for full credit) B Ꮎ 000arrow_forward
- pls solvearrow_forward+1. 0,63 fin r= 0.051 P The stepped rod in sketch is subjected to a tensile force that varies between 4000 and 7000 lb. The rod has a machined surface finish everywhere except the shoulder area, where a grinding operation has been performed to improve the fatigue resistance of the rod. Using a 99% probability of survival, determine the safety factor for infinite life if the rod is made of AISI 1080 steel, quenched and tempered at 800°c Use the Goodman line. Does the part fail at the fillet? Explainarrow_forwardSolve this problem and show all of the workarrow_forward
- I need drawing solution,draw each one by one no Aiarrow_forwardQu. 17 Compute linear density values for [100] for silver (Ag). Express your answer in nm''. . Round off the answer to three significant figures. Qu. 18 Compute linear density value for [111] direction for silver (Ag). Express your answer in nm'. Round off the answer to three significant figures. Qu. 19 Compute planar density value for (100) plane for chromium (Cr). Express your answer in nm?. Round off the answer to two significant figures. Qu. 20 Compute planar density value for (110) plane for chromium (Cr). Express your answer in nm ≥ to four significant figures. show all work please in material engineeringarrow_forward3-142arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
![Text book image](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781118170519/9781118170519_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337093347/9781337093347_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781118807330/9781118807330_smallCoverImage.gif)