ACHIEVE/CHEMICAL PRINCIPLES ACCESS 1TERM
7th Edition
ISBN: 9781319399849
Author: ATKINS
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Question
Chapter 5, Problem 5I.25E
Interpretation Introduction
Interpretation:
The equilibrium concentrations of each substance in a reaction vessel of volume
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A 1.00-L flask was filled with 2.14 mol gaseous SO2 and 2.14 mol gaseous NO2 and heated. After equilibrium was reached, it was found that 1.55 mol gaseous NO was present.
Assume that the reaction
SO2 (g) + NO, (g) = SO3(g) + NO(g)
occurs under these conditions. Calculate the value of the equilibrium constant, K, for this reaction.
HOW DO WE GET THERE?
What are the equilibrium concentrations of SO2, NO2, and SO3?
[SO2] =
[NO2] =
M
[SO3] =
M
For the reaction I2(g) + Br2(g) ⇌2 IBr(g) , Kc = 280at 150 °C. Suppose that 0.500 mol IBr in a 2.00-L flaskis allowed to reach equilibrium at 150 °C. What are theequilibrium concentrations of IBr, I2, and Br2?
Consider the following reactions and their respective equilibrium constants:
NO(g) + ½Br₂(g) = NOBr(g); K = 5.3
2NO(g) = N₂(g) + O₂(g); K = 2.1 × 10³⁰
Use these reactions and their equilibrium constants to predict the equilibrium constant for the following reaction:
N₂(g) + O2(g) + Br₂(g) = 2NOBr(g)
Express your answer using two significant figures.
Chapter 5 Solutions
ACHIEVE/CHEMICAL PRINCIPLES ACCESS 1TERM
Ch. 5 - Prob. 5A.1ASTCh. 5 - Prob. 5A.1BSTCh. 5 - Prob. 5A.2ASTCh. 5 - Prob. 5A.2BSTCh. 5 - Prob. 5A.3ASTCh. 5 - Prob. 5A.3BSTCh. 5 - Prob. 5A.1ECh. 5 - Prob. 5A.2ECh. 5 - Prob. 5A.3ECh. 5 - Prob. 5A.4E
Ch. 5 - Prob. 5A.5ECh. 5 - Prob. 5A.6ECh. 5 - Prob. 5A.7ECh. 5 - Prob. 5A.8ECh. 5 - Prob. 5A.11ECh. 5 - Prob. 5B.1ASTCh. 5 - Prob. 5B.1BSTCh. 5 - Prob. 5B.2ASTCh. 5 - Prob. 5B.2BSTCh. 5 - Prob. 5B.3ASTCh. 5 - Prob. 5B.3BSTCh. 5 - Prob. 5B.1ECh. 5 - Prob. 5B.2ECh. 5 - Prob. 5B.3ECh. 5 - Prob. 5B.5ECh. 5 - Prob. 5B.7ECh. 5 - Prob. 5C.1ASTCh. 5 - Prob. 5C.1BSTCh. 5 - Prob. 5C.2ASTCh. 5 - Prob. 5C.2BSTCh. 5 - Prob. 5C.3ASTCh. 5 - Prob. 5C.3BSTCh. 5 - Prob. 5C.1ECh. 5 - Prob. 5C.3ECh. 5 - Prob. 5C.4ECh. 5 - Prob. 5C.5ECh. 5 - Prob. 5C.6ECh. 5 - Prob. 5C.7ECh. 5 - Prob. 5C.8ECh. 5 - Prob. 5C.9ECh. 5 - Prob. 5C.10ECh. 5 - Prob. 5C.11ECh. 5 - Prob. 5C.12ECh. 5 - Prob. 5C.15ECh. 5 - Prob. 5C.16ECh. 5 - Prob. 5D.1ASTCh. 5 - Prob. 5D.1BSTCh. 5 - Prob. 5D.1ECh. 5 - Prob. 5D.2ECh. 5 - Prob. 5D.3ECh. 5 - Prob. 5D.4ECh. 5 - Prob. 5D.5ECh. 5 - Prob. 5D.6ECh. 5 - Prob. 5D.7ECh. 5 - Prob. 5D.8ECh. 5 - Prob. 5D.9ECh. 5 - Prob. 5D.10ECh. 5 - Prob. 5D.11ECh. 5 - Prob. 5D.12ECh. 5 - Prob. 5D.13ECh. 5 - Prob. 5D.14ECh. 5 - Prob. 5D.15ECh. 5 - Prob. 5D.16ECh. 5 - Prob. 5D.18ECh. 5 - Prob. 5D.19ECh. 5 - Prob. 5D.20ECh. 5 - Prob. 5E.1ASTCh. 5 - Prob. 5E.1BSTCh. 5 - Prob. 5E.2ASTCh. 5 - Prob. 5E.2BSTCh. 5 - Prob. 5E.1ECh. 5 - Prob. 5E.2ECh. 5 - Prob. 5E.11ECh. 5 - Prob. 5E.12ECh. 5 - Prob. 5F.1ASTCh. 5 - Prob. 5F.1BSTCh. 5 - Prob. 5F.2ASTCh. 5 - Prob. 5F.2BSTCh. 5 - Prob. 5F.3ASTCh. 5 - Prob. 5F.3BSTCh. 5 - Prob. 5F.4ASTCh. 5 - Prob. 5F.4BSTCh. 5 - Prob. 5F.5ASTCh. 5 - Prob. 5F.5BSTCh. 5 - Prob. 5F.1ECh. 5 - Prob. 5F.2ECh. 5 - Prob. 5F.3ECh. 5 - Prob. 5F.5ECh. 5 - Prob. 5F.7ECh. 5 - Prob. 5F.9ECh. 5 - Prob. 5F.10ECh. 5 - Prob. 5F.11ECh. 5 - Prob. 5F.12ECh. 5 - Prob. 5F.13ECh. 5 - Prob. 5F.14ECh. 5 - Prob. 5F.15ECh. 5 - Prob. 5F.16ECh. 5 - Prob. 5G.1ASTCh. 5 - Prob. 5G.1BSTCh. 5 - Prob. 5G.2ASTCh. 5 - Prob. 5G.2BSTCh. 5 - Prob. 5G.3ASTCh. 5 - Prob. 5G.3BSTCh. 5 - Prob. 5G.4ASTCh. 5 - Prob. 5G.4BSTCh. 5 - Prob. 5G.5ASTCh. 5 - Prob. 5G.5BSTCh. 5 - Prob. 5G.1ECh. 5 - Prob. 5G.2ECh. 5 - Prob. 5G.3ECh. 5 - Prob. 5G.4ECh. 5 - Prob. 5G.7ECh. 5 - Prob. 5G.8ECh. 5 - Prob. 5G.9ECh. 5 - Prob. 5G.11ECh. 5 - Prob. 5G.12ECh. 5 - Prob. 5G.13ECh. 5 - Prob. 5G.14ECh. 5 - Prob. 5G.15ECh. 5 - Prob. 5G.16ECh. 5 - Prob. 5G.17ECh. 5 - Prob. 5G.19ECh. 5 - Prob. 5G.20ECh. 5 - Prob. 5G.21ECh. 5 - Prob. 5G.22ECh. 5 - Prob. 5H.1ASTCh. 5 - Prob. 5H.1BSTCh. 5 - Prob. 5H.2ASTCh. 5 - Prob. 5H.2BSTCh. 5 - Prob. 5H.1ECh. 5 - Prob. 5H.2ECh. 5 - Prob. 5H.3ECh. 5 - Prob. 5H.4ECh. 5 - Prob. 5H.5ECh. 5 - Prob. 5H.6ECh. 5 - Prob. 5I.1ASTCh. 5 - Prob. 5I.1BSTCh. 5 - Prob. 5I.2ASTCh. 5 - Prob. 5I.2BSTCh. 5 - Prob. 5I.3ASTCh. 5 - Prob. 5I.3BSTCh. 5 - Prob. 5I.4ASTCh. 5 - Prob. 5I.4BSTCh. 5 - Prob. 5I.1ECh. 5 - Prob. 5I.2ECh. 5 - Prob. 5I.3ECh. 5 - Prob. 5I.4ECh. 5 - Prob. 5I.5ECh. 5 - Prob. 5I.6ECh. 5 - Prob. 5I.7ECh. 5 - Prob. 5I.9ECh. 5 - Prob. 5I.10ECh. 5 - Prob. 5I.11ECh. 5 - Prob. 5I.12ECh. 5 - Prob. 5I.13ECh. 5 - Prob. 5I.14ECh. 5 - Prob. 5I.15ECh. 5 - Prob. 5I.16ECh. 5 - Prob. 5I.17ECh. 5 - Prob. 5I.18ECh. 5 - Prob. 5I.19ECh. 5 - Prob. 5I.20ECh. 5 - Prob. 5I.21ECh. 5 - Prob. 5I.22ECh. 5 - Prob. 5I.23ECh. 5 - Prob. 5I.24ECh. 5 - Prob. 5I.25ECh. 5 - Prob. 5I.26ECh. 5 - Prob. 5I.27ECh. 5 - Prob. 5I.28ECh. 5 - Prob. 5I.29ECh. 5 - Prob. 5I.30ECh. 5 - Prob. 5I.32ECh. 5 - Prob. 5I.33ECh. 5 - Prob. 5I.34ECh. 5 - Prob. 5I.35ECh. 5 - Prob. 5I.36ECh. 5 - Prob. 5J.1ASTCh. 5 - Prob. 5J.1BSTCh. 5 - Prob. 5J.3ASTCh. 5 - Prob. 5J.3BSTCh. 5 - Prob. 5J.4ASTCh. 5 - Prob. 5J.4BSTCh. 5 - Prob. 5J.5ASTCh. 5 - Prob. 5J.5BSTCh. 5 - Prob. 5J.1ECh. 5 - Prob. 5J.2ECh. 5 - Prob. 5J.3ECh. 5 - Prob. 5J.4ECh. 5 - Prob. 5J.5ECh. 5 - Prob. 5J.6ECh. 5 - Prob. 5J.9ECh. 5 - Prob. 5J.10ECh. 5 - Prob. 5J.11ECh. 5 - Prob. 5J.12ECh. 5 - Prob. 5J.13ECh. 5 - Prob. 5J.17ECh. 5 - Prob. 5.1ECh. 5 - Prob. 5.2ECh. 5 - Prob. 5.3ECh. 5 - Prob. 5.4ECh. 5 - Prob. 5.5ECh. 5 - Prob. 5.6ECh. 5 - Prob. 5.7ECh. 5 - Prob. 5.8ECh. 5 - Prob. 5.9ECh. 5 - Prob. 5.10ECh. 5 - Prob. 5.11ECh. 5 - Prob. 5.12ECh. 5 - Prob. 5.13ECh. 5 - Prob. 5.14ECh. 5 - Prob. 5.15ECh. 5 - Prob. 5.16ECh. 5 - Prob. 5.17ECh. 5 - Prob. 5.19ECh. 5 - Prob. 5.23ECh. 5 - Prob. 5.24ECh. 5 - Prob. 5.25ECh. 5 - Prob. 5.26ECh. 5 - Prob. 5.27ECh. 5 - Prob. 5.28ECh. 5 - Prob. 5.29ECh. 5 - Prob. 5.30ECh. 5 - Prob. 5.31ECh. 5 - Prob. 5.32ECh. 5 - Prob. 5.33ECh. 5 - Prob. 5.35ECh. 5 - Prob. 5.37ECh. 5 - Prob. 5.38ECh. 5 - Prob. 5.41ECh. 5 - Prob. 5.43ECh. 5 - Prob. 5.44ECh. 5 - Prob. 5.45ECh. 5 - Prob. 5.46ECh. 5 - Prob. 5.47ECh. 5 - Prob. 5.49ECh. 5 - Prob. 5.51ECh. 5 - Prob. 5.53ECh. 5 - Prob. 5.55ECh. 5 - Prob. 5.57ECh. 5 - Prob. 5.58ECh. 5 - Prob. 5.61ECh. 5 - Prob. 5.62E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Show that the complete chemical equation, the total ionic equation, and the net ionic equation for the reaction represented by the equation KI(aq)+I2(aq)KI3(aq) give the same expression for the reaction quotient. KI3 is composed of the ions K+ and I3-.arrow_forwardIn a solution with carbon tetrachloride as the solvent, the compound VCl4. undergoes dimerization: 2VCl4V2Cl8 When 6.6834 g VCl4. is dissolved in 100.0 g carbon tetrachloride, the freezing point is lowered by 5.97C. Calculate the value of the equilibrium constant for the dimerization of VCl4 at this temperature. (The density of the equilibrium mixture is 1.696 g/cm3, and Kf = 29.8C kg/mol for CCl4.)arrow_forwardDescribe a nonchemical system that is not in equilibrium, and explain why equilibrium has not been achieved.arrow_forward
- Write an equation for an equilibrium system that would lead to the following expressions (ac) for K. (a) K=(Pco)2 (PH2)5(PC2H6)(PH2O)2 (b) K=(PNH3)4 (PO2)5(PNO)4 (PH2O)6 (c) K=[ ClO3 ]2 [ Mn2+ ]2(Pcl2)[ MNO4 ]2 [ H+ ]4 ; liquid water is a productarrow_forwardAt a certain temperature, K=0.29 for the decomposition of two moles of iodine trichloride, ICl3(s), to chlorine and iodine gases. The partial pressure of chlorine gas at equilibrium is three times that of iodine gas. What are the partial pressures of iodine and chlorine at equilibrium?arrow_forwardExplain why the development of a vapor pressure above a liquid in a closed container represents an equilibrium. What are the opposing processes? How do we recognize when the system has reached a state of equilibrium?arrow_forward
- . What does it mean to say that a state of chemical or physical equilibrium is dynamic?arrow_forwardA 4.72-g sample of methanol (CH3OH) was placed in an otherwise empty 1.00-L flask and heated to 250.C to vaporize the methanol. Over time, the methanol vapor decomposed by the following reaction: CH3OH(g)CO(g)+2H2(g) After the system has reached equilibrium, a tiny hole is drilled in the side of the flask allowing gaseous compounds to effuse out of the flask. Measurements of the effusing gas show that it contains 33.0 times as much H2(g) as CH3OH(g). Calculate K for this reaction at 250.C.arrow_forward12.103 Methanol, CH3OH, can be produced by the reaction of CO with H2, with the liberation of heat. All species in the reaction are gaseous. What effect will each of the following have on the equilibrium concentration of CO? (a) Pressure is increased, (b) volume of the reaction container is decreased, (c) heat is added, (d) the concentration of CO is increased, (e) some methanol is removed from the container, and (f) H2 is added.arrow_forward
- Simple acids such as formic acid, HCOOH, and acetic acid, CH3COOH, are very soluble in water; however, fatty acids such as stearic acid, CH3(CH2)16COOH, and palmitic acid, CH3(CH2)14COOH, are water-insoluble. Based on what you know about the solubility of alcohols, explain the solubility of these organic acids.arrow_forwardExactly 1.00 mol ClF3 is placed in an empty 1.00-L container (without any products initially) and allowed to reach equilibrium described by the equation 2 ClF3 (g) = Cl2 (g) + 3 F2 (g) at 380 K. After the reaction reaches equilibrium, the amount of F2 becomes 0.810 mol, what is the value of the equilibrium constant, Kc, for this reaction at 380 K? Your answer should have 3 significant figures.arrow_forwardA chemist is studying the following equilibirum, which has the given equilibrium constant at a certain temperature: -7 N2(g) + 3 H,(g)=2 NH3(g) к, — 6. х 10 He fills a reaction vessel at this temperature with 12. atm of nitrogen gas and 11. atm of hydrogen gas. Use this data to answer the questions in the table below. Can you predict the equilibrium pressure of NH3, using only the yes x10 tools available to you within ALEKS? no If you said yes, then enter the equilibrium pressure of NH, at right. || atm Round your answer to 1 significant digit.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Chemical Equilibria and Reaction Quotients; Author: Professor Dave Explains;https://www.youtube.com/watch?v=1GiZzCzmO5Q;License: Standard YouTube License, CC-BY